| author | blanchet |
| Mon, 16 Feb 2009 10:11:20 +0100 | |
| changeset 29926 | 7dac794eec91 |
| parent 28952 | 15a4b2cf8c34 |
| child 41959 | b460124855b8 |
| permissions | -rw-r--r-- |
(* Title: HOL/ex/Arithmetic_Series_Complex Author: Benjamin Porter, 2006 *) header {* Arithmetic Series for Reals *} theory Arithmetic_Series_Complex imports Complex_Main begin lemma arith_series_real: "(2::real) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) = of_nat n * (a + (a + of_nat(n - 1)*d))" proof - have "((1::real) + 1) * (\<Sum>i\<in>{..<n}. a + of_nat(i)*d) = of_nat(n) * (a + (a + of_nat(n - 1)*d))" by (rule arith_series_general) thus ?thesis by simp qed end