(* Title: FOL/ex/Prolog.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
*)
header {* First-Order Logic: PROLOG examples *}
theory Prolog
imports FOL
begin
typedecl 'a list
arities list :: ("term") "term"
axiomatization
Nil :: "'a list" and
Cons :: "['a, 'a list]=> 'a list" (infixr ":" 60) and
app :: "['a list, 'a list, 'a list] => o" and
rev :: "['a list, 'a list] => o"
where
appNil: "app(Nil,ys,ys)" and
appCons: "app(xs,ys,zs) ==> app(x:xs, ys, x:zs)" and
revNil: "rev(Nil,Nil)" and
revCons: "[| rev(xs,ys); app(ys, x:Nil, zs) |] ==> rev(x:xs, zs)"
schematic_lemma "app(a:b:c:Nil, d:e:Nil, ?x)"
apply (rule appNil appCons)
apply (rule appNil appCons)
apply (rule appNil appCons)
apply (rule appNil appCons)
done
schematic_lemma "app(?x, c:d:Nil, a:b:c:d:Nil)"
apply (rule appNil appCons)+
done
schematic_lemma "app(?x, ?y, a:b:c:d:Nil)"
apply (rule appNil appCons)+
back
back
back
back
done
(*app([x1,...,xn], y, ?z) requires (n+1) inferences*)
(*rev([x1,...,xn], ?y) requires (n+1)(n+2)/2 inferences*)
lemmas rules = appNil appCons revNil revCons
schematic_lemma "rev(a:b:c:d:Nil, ?x)"
apply (rule rules)+
done
schematic_lemma "rev(a:b:c:d:e:f:g:h:i:j:k:l:m:n:Nil, ?w)"
apply (rule rules)+
done
schematic_lemma "rev(?x, a:b:c:Nil)"
apply (rule rules)+ -- {* does not solve it directly! *}
back
back
done
(*backtracking version*)
ML {*
val prolog_tac = DEPTH_FIRST (has_fewer_prems 1) (resolve_tac (@{thms rules}) 1)
*}
schematic_lemma "rev(?x, a:b:c:Nil)"
apply (tactic prolog_tac)
done
schematic_lemma "rev(a:?x:c:?y:Nil, d:?z:b:?u)"
apply (tactic prolog_tac)
done
(*rev([a..p], ?w) requires 153 inferences *)
schematic_lemma "rev(a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:Nil, ?w)"
apply (tactic {* DEPTH_SOLVE (resolve_tac ([@{thm refl}, @{thm conjI}] @ @{thms rules}) 1) *})
done
(*?x has 16, ?y has 32; rev(?y,?w) requires 561 (rather large) inferences
total inferences = 2 + 1 + 17 + 561 = 581*)
schematic_lemma "a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:Nil = ?x & app(?x,?x,?y) & rev(?y,?w)"
apply (tactic {* DEPTH_SOLVE (resolve_tac ([@{thm refl}, @{thm conjI}] @ @{thms rules}) 1) *})
done
end