(* Author: Bernhard Haeupler
This theory is about of the relative completeness of method comm-ring
method. As long as the reified atomic polynomials of type 'a pol are
in normal form, the cring method is complete.
*)
section \<open>Proof of the relative completeness of method comm-ring\<close>
theory Commutative_Ring_Complete
imports Commutative_Ring
begin
text \<open>Formalization of normal form\<close>
fun isnorm :: "'a::comm_ring pol \<Rightarrow> bool"
where
"isnorm (Pc c) \<longleftrightarrow> True"
| "isnorm (Pinj i (Pc c)) \<longleftrightarrow> False"
| "isnorm (Pinj i (Pinj j Q)) \<longleftrightarrow> False"
| "isnorm (Pinj 0 P) \<longleftrightarrow> False"
| "isnorm (Pinj i (PX Q1 j Q2)) \<longleftrightarrow> isnorm (PX Q1 j Q2)"
| "isnorm (PX P 0 Q) \<longleftrightarrow> False"
| "isnorm (PX (Pc c) i Q) \<longleftrightarrow> c \<noteq> 0 \<and> isnorm Q"
| "isnorm (PX (PX P1 j (Pc c)) i Q) \<longleftrightarrow> c \<noteq> 0 \<and> isnorm (PX P1 j (Pc c)) \<and> isnorm Q"
| "isnorm (PX P i Q) \<longleftrightarrow> isnorm P \<and> isnorm Q"
(* Some helpful lemmas *)
lemma norm_Pinj_0_False: "isnorm (Pinj 0 P) = False"
by (cases P) auto
lemma norm_PX_0_False: "isnorm (PX (Pc 0) i Q) = False"
by (cases i) auto
lemma norm_Pinj: "isnorm (Pinj i Q) \<Longrightarrow> isnorm Q"
by (cases i) (simp add: norm_Pinj_0_False norm_PX_0_False, cases Q, auto)
lemma norm_PX2: "isnorm (PX P i Q) \<Longrightarrow> isnorm Q"
apply (cases i)
apply auto
apply (cases P)
apply auto
subgoal for \<dots> pol2 by (cases pol2) auto
done
lemma norm_PX1: "isnorm (PX P i Q) \<Longrightarrow> isnorm P"
apply (cases i)
apply auto
apply (cases P)
apply auto
subgoal for \<dots> pol2 by (cases pol2) auto
done
lemma mkPinj_cn: "y \<noteq> 0 \<Longrightarrow> isnorm Q \<Longrightarrow> isnorm (mkPinj y Q)"
apply (auto simp add: mkPinj_def norm_Pinj_0_False split: pol.split)
apply (rename_tac nat a, case_tac nat, auto simp add: norm_Pinj_0_False)
apply (rename_tac pol a, case_tac pol, auto)
apply (case_tac y, auto)
done
lemma norm_PXtrans:
assumes A: "isnorm (PX P x Q)"
and "isnorm Q2"
shows "isnorm (PX P x Q2)"
proof (cases P)
case (PX p1 y p2)
with assms show ?thesis
apply (cases x)
apply auto
apply (cases p2)
apply auto
done
next
case Pc
with assms show ?thesis
by (cases x) auto
next
case Pinj
with assms show ?thesis
by (cases x) auto
qed
lemma norm_PXtrans2:
assumes "isnorm (PX P x Q)"
and "isnorm Q2"
shows "isnorm (PX P (Suc (n + x)) Q2)"
proof (cases P)
case (PX p1 y p2)
with assms show ?thesis
apply (cases x)
apply auto
apply (cases p2)
apply auto
done
next
case Pc
with assms show ?thesis
by (cases x) auto
next
case Pinj
with assms show ?thesis
by (cases x) auto
qed
text \<open>mkPX conserves normalizedness (\<open>_cn\<close>)\<close>
lemma mkPX_cn:
assumes "x \<noteq> 0"
and "isnorm P"
and "isnorm Q"
shows "isnorm (mkPX P x Q)"
proof (cases P)
case (Pc c)
with assms show ?thesis
by (cases x) (auto simp add: mkPinj_cn mkPX_def)
next
case (Pinj i Q)
with assms show ?thesis
by (cases x) (auto simp add: mkPinj_cn mkPX_def)
next
case (PX P1 y P2)
with assms have Y0: "y > 0"
by (cases y) auto
from assms PX have "isnorm P1" "isnorm P2"
by (auto simp add: norm_PX1[of P1 y P2] norm_PX2[of P1 y P2])
from assms PX Y0 show ?thesis
apply (cases x)
apply (auto simp add: mkPX_def norm_PXtrans2[of P1 y _ Q _])
apply (cases P2)
apply auto
done
qed
text \<open>add conserves normalizedness\<close>
lemma add_cn: "isnorm P \<Longrightarrow> isnorm Q \<Longrightarrow> isnorm (P \<oplus> Q)"
proof (induct P Q rule: add.induct)
case 1
then show ?case by simp
next
case (2 c i P2)
then show ?case
apply (cases P2)
apply simp_all
apply (cases i)
apply simp_all
done
next
case (3 i P2 c)
then show ?case
apply (cases P2)
apply simp_all
apply (cases i)
apply simp_all
done
next
case (4 c P2 i Q2)
then have "isnorm P2" "isnorm Q2"
by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2])
with 4 show ?case
apply (cases i)
apply simp
apply (cases P2)
apply auto
subgoal for \<dots> pol2 by (cases pol2) auto
done
next
case (5 P2 i Q2 c)
then have "isnorm P2" "isnorm Q2"
by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2])
with 5 show ?case
apply (cases i)
apply simp
apply (cases P2)
apply auto
subgoal for \<dots> pol2 by (cases pol2) auto
done
next
case (6 x P2 y Q2)
then have Y0: "y > 0"
by (cases y) (auto simp add: norm_Pinj_0_False)
with 6 have X0: "x > 0"
by (cases x) (auto simp add: norm_Pinj_0_False)
consider "x < y" | "x = y" | "x > y" by arith
then show ?case
proof cases
case xy: 1
then obtain d where y: "y = d + x"
by atomize_elim arith
from 6 have *: "isnorm P2" "isnorm Q2"
by (auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2])
from 6 xy y have "isnorm (Pinj d Q2)"
by (cases d, simp, cases Q2, auto)
with 6 X0 y * show ?thesis
by (simp add: mkPinj_cn)
next
case xy: 2
from 6 have "isnorm P2" "isnorm Q2"
by (auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2])
with xy 6 Y0 show ?thesis
by (simp add: mkPinj_cn)
next
case xy: 3
then obtain d where x: "x = d + y"
by atomize_elim arith
from 6 have *: "isnorm P2" "isnorm Q2"
by (auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2])
from 6 xy x have "isnorm (Pinj d P2)"
by (cases d) (simp, cases P2, auto)
with xy 6 Y0 * x show ?thesis by (simp add: mkPinj_cn)
qed
next
case (7 x P2 Q2 y R)
consider "x = 0" | "x = 1" | d where "x = Suc (Suc d)"
by atomize_elim arith
then show ?case
proof cases
case 1
with 7 show ?thesis
by (auto simp add: norm_Pinj_0_False)
next
case x: 2
from 7 have "isnorm R" "isnorm P2"
by (auto simp add: norm_Pinj[of _ P2] norm_PX2[of Q2 y R])
with 7 x have "isnorm (R \<oplus> P2)"
by simp
with 7 x show ?thesis
by (simp add: norm_PXtrans[of Q2 y _])
next
case x: 3
with 7 have NR: "isnorm R" "isnorm P2"
by (auto simp add: norm_Pinj[of _ P2] norm_PX2[of Q2 y R])
with 7 x have "isnorm (Pinj (x - 1) P2)"
by (cases P2) auto
with 7 x NR have "isnorm (R \<oplus> Pinj (x - 1) P2)"
by simp
with \<open>isnorm (PX Q2 y R)\<close> x show ?thesis
by (simp add: norm_PXtrans[of Q2 y _])
qed
next
case (8 Q2 y R x P2)
consider "x = 0" | "x = 1" | "x > 1"
by arith
then show ?case
proof cases
case 1
with 8 show ?thesis
by (auto simp add: norm_Pinj_0_False)
next
case x: 2
with 8 have "isnorm R" "isnorm P2"
by (auto simp add: norm_Pinj[of _ P2] norm_PX2[of Q2 y R])
with 8 x have "isnorm (R \<oplus> P2)"
by simp
with 8 x show ?thesis
by (simp add: norm_PXtrans[of Q2 y _])
next
case x: 3
then obtain d where x: "x = Suc (Suc d)" by atomize_elim arith
with 8 have NR: "isnorm R" "isnorm P2"
by (auto simp add: norm_Pinj[of _ P2] norm_PX2[of Q2 y R])
with 8 x have "isnorm (Pinj (x - 1) P2)"
by (cases P2) auto
with 8 x NR have "isnorm (R \<oplus> Pinj (x - 1) P2)"
by simp
with \<open>isnorm (PX Q2 y R)\<close> x show ?thesis
by (simp add: norm_PXtrans[of Q2 y _])
qed
next
case (9 P1 x P2 Q1 y Q2)
then have Y0: "y > 0" by (cases y) auto
with 9 have X0: "x > 0" by (cases x) auto
with 9 have NP1: "isnorm P1" and NP2: "isnorm P2"
by (auto simp add: norm_PX1[of P1 _ P2] norm_PX2[of P1 _ P2])
with 9 have NQ1: "isnorm Q1" and NQ2: "isnorm Q2"
by (auto simp add: norm_PX1[of Q1 _ Q2] norm_PX2[of Q1 _ Q2])
consider "y < x" | "x = y" | "x < y" by arith
then show ?case
proof cases
case xy: 1
then obtain d where x: "x = d + y"
by atomize_elim arith
have "isnorm (PX P1 d (Pc 0))"
proof (cases P1)
case (PX p1 y p2)
with 9 xy x show ?thesis
by (cases d) (simp, cases p2, auto)
next
case Pc
with 9 xy x show ?thesis
by (cases d) auto
next
case Pinj
with 9 xy x show ?thesis
by (cases d) auto
qed
with 9 NQ1 NP1 NP2 NQ2 xy x have "isnorm (P2 \<oplus> Q2)" "isnorm (PX P1 (x - y) (Pc 0) \<oplus> Q1)"
by auto
with Y0 xy x show ?thesis
by (simp add: mkPX_cn)
next
case xy: 2
with 9 NP1 NP2 NQ1 NQ2 have "isnorm (P2 \<oplus> Q2)" "isnorm (P1 \<oplus> Q1)"
by auto
with xy Y0 show ?thesis
by (simp add: mkPX_cn)
next
case xy: 3
then obtain d where y: "y = d + x"
by atomize_elim arith
have "isnorm (PX Q1 d (Pc 0))"
proof (cases Q1)
case (PX p1 y p2)
with 9 xy y show ?thesis
by (cases d) (simp, cases p2, auto)
next
case Pc
with 9 xy y show ?thesis
by (cases d) auto
next
case Pinj
with 9 xy y show ?thesis
by (cases d) auto
qed
with 9 NQ1 NP1 NP2 NQ2 xy y have "isnorm (P2 \<oplus> Q2)" "isnorm (PX Q1 (y - x) (Pc 0) \<oplus> P1)"
by auto
with X0 xy y show ?thesis
by (simp add: mkPX_cn)
qed
qed
text \<open>mul concerves normalizedness\<close>
lemma mul_cn: "isnorm P \<Longrightarrow> isnorm Q \<Longrightarrow> isnorm (P \<otimes> Q)"
proof (induct P Q rule: mul.induct)
case 1
then show ?case by simp
next
case (2 c i P2)
then show ?case
apply (cases P2)
apply simp_all
apply (cases i)
apply (simp_all add: mkPinj_cn)
done
next
case (3 i P2 c)
then show ?case
apply (cases P2)
apply simp_all
apply (cases i)
apply (simp_all add: mkPinj_cn)
done
next
case (4 c P2 i Q2)
then have "isnorm P2" "isnorm Q2"
by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2])
with 4 show ?case
apply (cases "c = 0")
apply simp_all
apply (cases "i = 0")
apply (simp_all add: mkPX_cn)
done
next
case (5 P2 i Q2 c)
then have "isnorm P2" "isnorm Q2"
by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2])
with 5 show ?case
apply (cases "c = 0")
apply simp_all
apply (cases "i = 0")
apply (simp_all add: mkPX_cn)
done
next
case (6 x P2 y Q2)
consider "x < y" | "x = y" | "x > y" by arith
then show ?case
proof cases
case xy: 1
then obtain d where y: "y = d + x"
by atomize_elim arith
from 6 have *: "x > 0"
by (cases x) (auto simp add: norm_Pinj_0_False)
from 6 have **: "isnorm P2" "isnorm Q2"
by (auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2])
from 6 xy y have "isnorm (Pinj d Q2)"
apply (cases d)
apply simp
apply (cases Q2)
apply auto
done
with 6 * ** y show ?thesis
by (simp add: mkPinj_cn)
next
case xy: 2
from 6 have *: "isnorm P2" "isnorm Q2"
by (auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2])
from 6 have **: "y > 0"
by (cases y) (auto simp add: norm_Pinj_0_False)
with 6 xy * ** show ?thesis
by (simp add: mkPinj_cn)
next
case xy: 3
then obtain d where x: "x = d + y"
by atomize_elim arith
from 6 have *: "y > 0"
by (cases y) (auto simp add: norm_Pinj_0_False)
from 6 have **: "isnorm P2" "isnorm Q2"
by (auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2])
from 6 xy x have "isnorm (Pinj d P2)"
apply (cases d)
apply simp
apply (cases P2)
apply auto
done
with 6 xy * ** x show ?thesis
by (simp add: mkPinj_cn)
qed
next
case (7 x P2 Q2 y R)
then have Y0: "y > 0" by (cases y) auto
consider "x = 0" | "x = 1" | d where "x = Suc (Suc d)"
by atomize_elim arith
then show ?case
proof cases
case 1
with 7 show ?thesis
by (auto simp add: norm_Pinj_0_False)
next
case x: 2
from 7 have "isnorm R" "isnorm P2"
by (auto simp add: norm_Pinj[of _ P2] norm_PX2[of Q2 y R])
with 7 x have "isnorm (R \<otimes> P2)" "isnorm Q2"
by (auto simp add: norm_PX1[of Q2 y R])
with 7 x Y0 show ?thesis
by (simp add: mkPX_cn)
next
case x: 3
from 7 have *: "isnorm R" "isnorm Q2"
by (auto simp add: norm_PX2[of Q2 y R] norm_PX1[of Q2 y R])
from 7 x have "isnorm (Pinj (x - 1) P2)"
by (cases P2) auto
with 7 x * have "isnorm (R \<otimes> Pinj (x - 1) P2)" "isnorm (Pinj x P2 \<otimes> Q2)"
by auto
with Y0 x show ?thesis
by (simp add: mkPX_cn)
qed
next
case (8 Q2 y R x P2)
then have Y0: "y > 0"
by (cases y) auto
consider "x = 0" | "x = 1" | d where "x = Suc (Suc d)"
by atomize_elim arith
then show ?case
proof cases
case 1
with 8 show ?thesis
by (auto simp add: norm_Pinj_0_False)
next
case x: 2
from 8 have "isnorm R" "isnorm P2"
by (auto simp add: norm_Pinj[of _ P2] norm_PX2[of Q2 y R])
with 8 x have "isnorm (R \<otimes> P2)" "isnorm Q2"
by (auto simp add: norm_PX1[of Q2 y R])
with 8 x Y0 show ?thesis
by (simp add: mkPX_cn)
next
case x: 3
from 8 have *: "isnorm R" "isnorm Q2"
by (auto simp add: norm_PX2[of Q2 y R] norm_PX1[of Q2 y R])
from 8 x have "isnorm (Pinj (x - 1) P2)"
by (cases P2) auto
with 8 x * have "isnorm (R \<otimes> Pinj (x - 1) P2)" "isnorm (Pinj x P2 \<otimes> Q2)"
by auto
with Y0 x show ?thesis
by (simp add: mkPX_cn)
qed
next
case (9 P1 x P2 Q1 y Q2)
from 9 have X0: "x > 0" by (cases x) auto
from 9 have Y0: "y > 0" by (cases y) auto
from 9 have *: "isnorm P1" "isnorm P2"
by (auto simp add: norm_PX1[of P1 x P2] norm_PX2[of P1 x P2])
from 9 have "isnorm Q1" "isnorm Q2"
by (auto simp add: norm_PX1[of Q1 y Q2] norm_PX2[of Q1 y Q2])
with 9 * have "isnorm (P1 \<otimes> Q1)" "isnorm (P2 \<otimes> Q2)"
"isnorm (P1 \<otimes> mkPinj 1 Q2)" "isnorm (Q1 \<otimes> mkPinj 1 P2)"
by (auto simp add: mkPinj_cn)
with 9 X0 Y0 have
"isnorm (mkPX (P1 \<otimes> Q1) (x + y) (P2 \<otimes> Q2))"
"isnorm (mkPX (P1 \<otimes> mkPinj (Suc 0) Q2) x (Pc 0))"
"isnorm (mkPX (Q1 \<otimes> mkPinj (Suc 0) P2) y (Pc 0))"
by (auto simp add: mkPX_cn)
then show ?case
by (simp add: add_cn)
qed
text \<open>neg conserves normalizedness\<close>
lemma neg_cn: "isnorm P \<Longrightarrow> isnorm (neg P)"
proof (induct P)
case Pc
then show ?case by simp
next
case (Pinj i P2)
then have "isnorm P2"
by (simp add: norm_Pinj[of i P2])
with Pinj show ?case
by (cases P2) (auto, cases i, auto)
next
case (PX P1 x P2) note PX1 = this
from PX have "isnorm P2" "isnorm P1"
by (auto simp add: norm_PX1[of P1 x P2] norm_PX2[of P1 x P2])
with PX show ?case
proof (cases P1)
case (PX p1 y p2)
with PX1 show ?thesis
by (cases x) (auto, cases p2, auto)
next
case Pinj
with PX1 show ?thesis
by (cases x) auto
qed (cases x, auto)
qed
text \<open>sub conserves normalizedness\<close>
lemma sub_cn: "isnorm p \<Longrightarrow> isnorm q \<Longrightarrow> isnorm (p \<ominus> q)"
by (simp add: sub_def add_cn neg_cn)
text \<open>sqr conserves normalizizedness\<close>
lemma sqr_cn: "isnorm P \<Longrightarrow> isnorm (sqr P)"
proof (induct P)
case Pc
then show ?case by simp
next
case (Pinj i Q)
then show ?case
apply (cases Q)
apply (auto simp add: mkPX_cn mkPinj_cn)
apply (cases i)
apply (auto simp add: mkPX_cn mkPinj_cn)
done
next
case (PX P1 x P2)
then have "x + x \<noteq> 0" "isnorm P2" "isnorm P1"
apply (cases x)
using PX
apply (auto simp add: norm_PX1[of P1 x P2] norm_PX2[of P1 x P2])
done
with PX have "isnorm (mkPX (Pc (1 + 1) \<otimes> P1 \<otimes> mkPinj (Suc 0) P2) x (Pc 0))"
and "isnorm (mkPX (sqr P1) (x + x) (sqr P2))"
by (auto simp add: add_cn mkPX_cn mkPinj_cn mul_cn)
then show ?case
by (auto simp add: add_cn mkPX_cn mkPinj_cn mul_cn)
qed
text \<open>pow conserves normalizedness\<close>
lemma pow_cn: "isnorm P \<Longrightarrow> isnorm (pow n P)"
proof (induct n arbitrary: P rule: less_induct)
case (less k)
show ?case
proof (cases "k = 0")
case True
then show ?thesis by simp
next
case False
then have K2: "k div 2 < k"
by (cases k) auto
from less have "isnorm (sqr P)"
by (simp add: sqr_cn)
with less False K2 show ?thesis
by (cases "even k") (auto simp add: mul_cn elim: evenE oddE)
qed
qed
end