(* Title: HOL/Order_Relation.thy
Author: Tobias Nipkow
Author: Andrei Popescu, TU Muenchen
*)
section \<open>Orders as Relations\<close>
theory Order_Relation
imports Wfrec
begin
subsection\<open>Orders on a set\<close>
definition "preorder_on A r \<equiv> refl_on A r \<and> trans r"
definition "partial_order_on A r \<equiv> preorder_on A r \<and> antisym r"
definition "linear_order_on A r \<equiv> partial_order_on A r \<and> total_on A r"
definition "strict_linear_order_on A r \<equiv> trans r \<and> irrefl r \<and> total_on A r"
definition "well_order_on A r \<equiv> linear_order_on A r \<and> wf(r - Id)"
lemmas order_on_defs =
preorder_on_def partial_order_on_def linear_order_on_def
strict_linear_order_on_def well_order_on_def
lemma preorder_on_empty[simp]: "preorder_on {} {}"
by(simp add:preorder_on_def trans_def)
lemma partial_order_on_empty[simp]: "partial_order_on {} {}"
by(simp add:partial_order_on_def)
lemma lnear_order_on_empty[simp]: "linear_order_on {} {}"
by(simp add:linear_order_on_def)
lemma well_order_on_empty[simp]: "well_order_on {} {}"
by(simp add:well_order_on_def)
lemma preorder_on_converse[simp]: "preorder_on A (r^-1) = preorder_on A r"
by (simp add:preorder_on_def)
lemma partial_order_on_converse[simp]:
"partial_order_on A (r^-1) = partial_order_on A r"
by (simp add: partial_order_on_def)
lemma linear_order_on_converse[simp]:
"linear_order_on A (r^-1) = linear_order_on A r"
by (simp add: linear_order_on_def)
lemma strict_linear_order_on_diff_Id:
"linear_order_on A r \<Longrightarrow> strict_linear_order_on A (r-Id)"
by(simp add: order_on_defs trans_diff_Id)
lemma linear_order_on_singleton [simp]: "linear_order_on {x} {(x, x)}"
unfolding order_on_defs by simp
lemma linear_order_on_acyclic:
assumes "linear_order_on A r"
shows "acyclic (r - Id)"
using strict_linear_order_on_diff_Id[OF assms]
by(auto simp add: acyclic_irrefl strict_linear_order_on_def)
lemma linear_order_on_well_order_on:
assumes "finite r"
shows "linear_order_on A r \<longleftrightarrow> well_order_on A r"
unfolding well_order_on_def
using assms finite_acyclic_wf[OF _ linear_order_on_acyclic, of r] by blast
subsection\<open>Orders on the field\<close>
abbreviation "Refl r \<equiv> refl_on (Field r) r"
abbreviation "Preorder r \<equiv> preorder_on (Field r) r"
abbreviation "Partial_order r \<equiv> partial_order_on (Field r) r"
abbreviation "Total r \<equiv> total_on (Field r) r"
abbreviation "Linear_order r \<equiv> linear_order_on (Field r) r"
abbreviation "Well_order r \<equiv> well_order_on (Field r) r"
lemma subset_Image_Image_iff:
"\<lbrakk> Preorder r; A \<subseteq> Field r; B \<subseteq> Field r\<rbrakk> \<Longrightarrow>
r `` A \<subseteq> r `` B \<longleftrightarrow> (\<forall>a\<in>A.\<exists>b\<in>B. (b,a):r)"
unfolding preorder_on_def refl_on_def Image_def
apply (simp add: subset_eq)
unfolding trans_def by fast
lemma subset_Image1_Image1_iff:
"\<lbrakk> Preorder r; a : Field r; b : Field r\<rbrakk> \<Longrightarrow> r `` {a} \<subseteq> r `` {b} \<longleftrightarrow> (b,a):r"
by(simp add:subset_Image_Image_iff)
lemma Refl_antisym_eq_Image1_Image1_iff:
assumes r: "Refl r" and as: "antisym r" and abf: "a \<in> Field r" "b \<in> Field r"
shows "r `` {a} = r `` {b} \<longleftrightarrow> a = b"
proof
assume "r `` {a} = r `` {b}"
hence e: "\<And>x. (a, x) \<in> r \<longleftrightarrow> (b, x) \<in> r" by (simp add: set_eq_iff)
have "(a, a) \<in> r" "(b, b) \<in> r" using r abf by (simp_all add: refl_on_def)
hence "(a, b) \<in> r" "(b, a) \<in> r" using e[of a] e[of b] by simp_all
thus "a = b" using as[unfolded antisym_def] by blast
qed fast
lemma Partial_order_eq_Image1_Image1_iff:
"\<lbrakk>Partial_order r; a:Field r; b:Field r\<rbrakk> \<Longrightarrow> r `` {a} = r `` {b} \<longleftrightarrow> a=b"
by(auto simp:order_on_defs Refl_antisym_eq_Image1_Image1_iff)
lemma Total_Id_Field:
assumes TOT: "Total r" and NID: "\<not> (r <= Id)"
shows "Field r = Field(r - Id)"
using mono_Field[of "r - Id" r] Diff_subset[of r Id]
proof(auto)
have "r \<noteq> {}" using NID by fast
then obtain b and c where "b \<noteq> c \<and> (b,c) \<in> r" using NID by auto
hence 1: "b \<noteq> c \<and> {b,c} \<le> Field r" by (auto simp: Field_def)
fix a assume *: "a \<in> Field r"
obtain d where 2: "d \<in> Field r" and 3: "d \<noteq> a"
using * 1 by auto
hence "(a,d) \<in> r \<or> (d,a) \<in> r" using * TOT
by (simp add: total_on_def)
thus "a \<in> Field(r - Id)" using 3 unfolding Field_def by blast
qed
subsection\<open>Orders on a type\<close>
abbreviation "strict_linear_order \<equiv> strict_linear_order_on UNIV"
abbreviation "linear_order \<equiv> linear_order_on UNIV"
abbreviation "well_order \<equiv> well_order_on UNIV"
subsection \<open>Order-like relations\<close>
text\<open>In this subsection, we develop basic concepts and results pertaining
to order-like relations, i.e., to reflexive and/or transitive and/or symmetric and/or
total relations. We also further define upper and lower bounds operators.\<close>
subsubsection \<open>Auxiliaries\<close>
lemma refl_on_domain:
"\<lbrakk>refl_on A r; (a,b) : r\<rbrakk> \<Longrightarrow> a \<in> A \<and> b \<in> A"
by(auto simp add: refl_on_def)
corollary well_order_on_domain:
"\<lbrakk>well_order_on A r; (a,b) \<in> r\<rbrakk> \<Longrightarrow> a \<in> A \<and> b \<in> A"
by (auto simp add: refl_on_domain order_on_defs)
lemma well_order_on_Field:
"well_order_on A r \<Longrightarrow> A = Field r"
by(auto simp add: refl_on_def Field_def order_on_defs)
lemma well_order_on_Well_order:
"well_order_on A r \<Longrightarrow> A = Field r \<and> Well_order r"
using well_order_on_Field by auto
lemma Total_subset_Id:
assumes TOT: "Total r" and SUB: "r \<le> Id"
shows "r = {} \<or> (\<exists>a. r = {(a,a)})"
proof-
{assume "r \<noteq> {}"
then obtain a b where 1: "(a,b) \<in> r" by fast
hence "a = b" using SUB by blast
hence 2: "(a,a) \<in> r" using 1 by simp
{fix c d assume "(c,d) \<in> r"
hence "{a,c,d} \<le> Field r" using 1 unfolding Field_def by blast
hence "((a,c) \<in> r \<or> (c,a) \<in> r \<or> a = c) \<and>
((a,d) \<in> r \<or> (d,a) \<in> r \<or> a = d)"
using TOT unfolding total_on_def by blast
hence "a = c \<and> a = d" using SUB by blast
}
hence "r \<le> {(a,a)}" by auto
with 2 have "\<exists>a. r = {(a,a)}" by blast
}
thus ?thesis by blast
qed
lemma Linear_order_in_diff_Id:
assumes LI: "Linear_order r" and
IN1: "a \<in> Field r" and IN2: "b \<in> Field r"
shows "((a,b) \<in> r) = ((b,a) \<notin> r - Id)"
using assms unfolding order_on_defs total_on_def antisym_def Id_def refl_on_def by force
subsubsection \<open>The upper and lower bounds operators\<close>
text\<open>Here we define upper (``above") and lower (``below") bounds operators.
We think of \<open>r\<close> as a {\em non-strict} relation. The suffix ``S"
at the names of some operators indicates that the bounds are strict -- e.g.,
\<open>underS a\<close> is the set of all strict lower bounds of \<open>a\<close> (w.r.t. \<open>r\<close>).
Capitalization of the first letter in the name reminds that the operator acts on sets, rather
than on individual elements.\<close>
definition under::"'a rel \<Rightarrow> 'a \<Rightarrow> 'a set"
where "under r a \<equiv> {b. (b,a) \<in> r}"
definition underS::"'a rel \<Rightarrow> 'a \<Rightarrow> 'a set"
where "underS r a \<equiv> {b. b \<noteq> a \<and> (b,a) \<in> r}"
definition Under::"'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set"
where "Under r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. (b,a) \<in> r}"
definition UnderS::"'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set"
where "UnderS r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. b \<noteq> a \<and> (b,a) \<in> r}"
definition above::"'a rel \<Rightarrow> 'a \<Rightarrow> 'a set"
where "above r a \<equiv> {b. (a,b) \<in> r}"
definition aboveS::"'a rel \<Rightarrow> 'a \<Rightarrow> 'a set"
where "aboveS r a \<equiv> {b. b \<noteq> a \<and> (a,b) \<in> r}"
definition Above::"'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set"
where "Above r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. (a,b) \<in> r}"
definition AboveS::"'a rel \<Rightarrow> 'a set \<Rightarrow> 'a set"
where "AboveS r A \<equiv> {b \<in> Field r. \<forall>a \<in> A. b \<noteq> a \<and> (a,b) \<in> r}"
definition ofilter :: "'a rel \<Rightarrow> 'a set \<Rightarrow> bool"
where "ofilter r A \<equiv> (A \<le> Field r) \<and> (\<forall>a \<in> A. under r a \<le> A)"
text\<open>Note: In the definitions of \<open>Above[S]\<close> and \<open>Under[S]\<close>,
we bounded comprehension by \<open>Field r\<close> in order to properly cover
the case of \<open>A\<close> being empty.\<close>
lemma underS_subset_under: "underS r a \<le> under r a"
by(auto simp add: underS_def under_def)
lemma underS_notIn: "a \<notin> underS r a"
by(simp add: underS_def)
lemma Refl_under_in: "\<lbrakk>Refl r; a \<in> Field r\<rbrakk> \<Longrightarrow> a \<in> under r a"
by(simp add: refl_on_def under_def)
lemma AboveS_disjoint: "A Int (AboveS r A) = {}"
by(auto simp add: AboveS_def)
lemma in_AboveS_underS: "a \<in> Field r \<Longrightarrow> a \<in> AboveS r (underS r a)"
by(auto simp add: AboveS_def underS_def)
lemma Refl_under_underS:
assumes "Refl r" "a \<in> Field r"
shows "under r a = underS r a \<union> {a}"
unfolding under_def underS_def
using assms refl_on_def[of _ r] by fastforce
lemma underS_empty: "a \<notin> Field r \<Longrightarrow> underS r a = {}"
by (auto simp: Field_def underS_def)
lemma under_Field: "under r a \<le> Field r"
by(unfold under_def Field_def, auto)
lemma underS_Field: "underS r a \<le> Field r"
by(unfold underS_def Field_def, auto)
lemma underS_Field2:
"a \<in> Field r \<Longrightarrow> underS r a < Field r"
using underS_notIn underS_Field by fast
lemma underS_Field3:
"Field r \<noteq> {} \<Longrightarrow> underS r a < Field r"
by(cases "a \<in> Field r", simp add: underS_Field2, auto simp add: underS_empty)
lemma AboveS_Field: "AboveS r A \<le> Field r"
by(unfold AboveS_def Field_def, auto)
lemma under_incr:
assumes TRANS: "trans r" and REL: "(a,b) \<in> r"
shows "under r a \<le> under r b"
proof(unfold under_def, auto)
fix x assume "(x,a) \<in> r"
with REL TRANS trans_def[of r]
show "(x,b) \<in> r" by blast
qed
lemma underS_incr:
assumes TRANS: "trans r" and ANTISYM: "antisym r" and
REL: "(a,b) \<in> r"
shows "underS r a \<le> underS r b"
proof(unfold underS_def, auto)
assume *: "b \<noteq> a" and **: "(b,a) \<in> r"
with ANTISYM antisym_def[of r] REL
show False by blast
next
fix x assume "x \<noteq> a" "(x,a) \<in> r"
with REL TRANS trans_def[of r]
show "(x,b) \<in> r" by blast
qed
lemma underS_incl_iff:
assumes LO: "Linear_order r" and
INa: "a \<in> Field r" and INb: "b \<in> Field r"
shows "(underS r a \<le> underS r b) = ((a,b) \<in> r)"
proof
assume "(a,b) \<in> r"
thus "underS r a \<le> underS r b" using LO
by (simp add: order_on_defs underS_incr)
next
assume *: "underS r a \<le> underS r b"
{assume "a = b"
hence "(a,b) \<in> r" using assms
by (simp add: order_on_defs refl_on_def)
}
moreover
{assume "a \<noteq> b \<and> (b,a) \<in> r"
hence "b \<in> underS r a" unfolding underS_def by blast
hence "b \<in> underS r b" using * by blast
hence False by (simp add: underS_notIn)
}
ultimately
show "(a,b) \<in> r" using assms
order_on_defs[of "Field r" r] total_on_def[of "Field r" r] by blast
qed
lemma finite_Linear_order_induct[consumes 3, case_names step]:
assumes "Linear_order r"
and "x \<in> Field r"
and "finite r"
and step: "\<And>x. \<lbrakk>x \<in> Field r; \<And>y. y \<in> aboveS r x \<Longrightarrow> P y\<rbrakk> \<Longrightarrow> P x"
shows "P x"
using assms(2)
proof(induct rule: wf_induct[of "r\<inverse> - Id"])
from assms(1,3) show "wf (r\<inverse> - Id)"
using linear_order_on_well_order_on linear_order_on_converse
unfolding well_order_on_def by blast
next
case (2 x) then show ?case
by - (rule step; auto simp: aboveS_def intro: FieldI2)
qed
subsection \<open>Variations on Well-Founded Relations\<close>
text \<open>
This subsection contains some variations of the results from @{theory Wellfounded}:
\begin{itemize}
\item means for slightly more direct definitions by well-founded recursion;
\item variations of well-founded induction;
\item means for proving a linear order to be a well-order.
\end{itemize}
\<close>
subsubsection \<open>Characterizations of well-foundedness\<close>
text \<open>A transitive relation is well-founded iff it is ``locally'' well-founded,
i.e., iff its restriction to the lower bounds of of any element is well-founded.\<close>
lemma trans_wf_iff:
assumes "trans r"
shows "wf r = (\<forall>a. wf(r Int (r^-1``{a} \<times> r^-1``{a})))"
proof-
obtain R where R_def: "R = (\<lambda> a. r Int (r^-1``{a} \<times> r^-1``{a}))" by blast
{assume *: "wf r"
{fix a
have "wf(R a)"
using * R_def wf_subset[of r "R a"] by auto
}
}
(* *)
moreover
{assume *: "\<forall>a. wf(R a)"
have "wf r"
proof(unfold wf_def, clarify)
fix phi a
assume **: "\<forall>a. (\<forall>b. (b,a) \<in> r \<longrightarrow> phi b) \<longrightarrow> phi a"
obtain chi where chi_def: "chi = (\<lambda>b. (b,a) \<in> r \<longrightarrow> phi b)" by blast
with * have "wf (R a)" by auto
hence "(\<forall>b. (\<forall>c. (c,b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b) \<longrightarrow> (\<forall>b. chi b)"
unfolding wf_def by blast
moreover
have "\<forall>b. (\<forall>c. (c,b) \<in> R a \<longrightarrow> chi c) \<longrightarrow> chi b"
proof(auto simp add: chi_def R_def)
fix b
assume 1: "(b,a) \<in> r" and 2: "\<forall>c. (c, b) \<in> r \<and> (c, a) \<in> r \<longrightarrow> phi c"
hence "\<forall>c. (c, b) \<in> r \<longrightarrow> phi c"
using assms trans_def[of r] by blast
thus "phi b" using ** by blast
qed
ultimately have "\<forall>b. chi b" by (rule mp)
with ** chi_def show "phi a" by blast
qed
}
ultimately show ?thesis using R_def by blast
qed
text \<open>The next lemma is a variation of \<open>wf_eq_minimal\<close> from Wellfounded,
allowing one to assume the set included in the field.\<close>
lemma wf_eq_minimal2:
"wf r = (\<forall>A. A <= Field r \<and> A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. \<not> (a',a) \<in> r))"
proof-
let ?phi = "\<lambda> A. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. \<not> (a',a) \<in> r)"
have "wf r = (\<forall>A. ?phi A)"
by (auto simp: ex_in_conv [THEN sym], erule wfE_min, assumption, blast)
(rule wfI_min, fast)
(* *)
also have "(\<forall>A. ?phi A) = (\<forall>B \<le> Field r. ?phi B)"
proof
assume "\<forall>A. ?phi A"
thus "\<forall>B \<le> Field r. ?phi B" by simp
next
assume *: "\<forall>B \<le> Field r. ?phi B"
show "\<forall>A. ?phi A"
proof(clarify)
fix A::"'a set" assume **: "A \<noteq> {}"
obtain B where B_def: "B = A Int (Field r)" by blast
show "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r"
proof(cases "B = {}")
assume Case1: "B = {}"
obtain a where 1: "a \<in> A \<and> a \<notin> Field r"
using ** Case1 unfolding B_def by blast
hence "\<forall>a' \<in> A. (a',a) \<notin> r" using 1 unfolding Field_def by blast
thus ?thesis using 1 by blast
next
assume Case2: "B \<noteq> {}" have 1: "B \<le> Field r" unfolding B_def by blast
obtain a where 2: "a \<in> B \<and> (\<forall>a' \<in> B. (a',a) \<notin> r)"
using Case2 1 * by blast
have "\<forall>a' \<in> A. (a',a) \<notin> r"
proof(clarify)
fix a' assume "a' \<in> A" and **: "(a',a) \<in> r"
hence "a' \<in> B" unfolding B_def Field_def by blast
thus False using 2 ** by blast
qed
thus ?thesis using 2 unfolding B_def by blast
qed
qed
qed
finally show ?thesis by blast
qed
subsubsection \<open>Characterizations of well-foundedness\<close>
text \<open>The next lemma and its corollary enable one to prove that
a linear order is a well-order in a way which is more standard than
via well-foundedness of the strict version of the relation.\<close>
lemma Linear_order_wf_diff_Id:
assumes LI: "Linear_order r"
shows "wf(r - Id) = (\<forall>A \<le> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r))"
proof(cases "r \<le> Id")
assume Case1: "r \<le> Id"
hence temp: "r - Id = {}" by blast
hence "wf(r - Id)" by (simp add: temp)
moreover
{fix A assume *: "A \<le> Field r" and **: "A \<noteq> {}"
obtain a where 1: "r = {} \<or> r = {(a,a)}" using LI
unfolding order_on_defs using Case1 Total_subset_Id by auto
hence "A = {a} \<and> r = {(a,a)}" using * ** unfolding Field_def by blast
hence "\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r" using 1 by blast
}
ultimately show ?thesis by blast
next
assume Case2: "\<not> r \<le> Id"
hence 1: "Field r = Field(r - Id)" using Total_Id_Field LI
unfolding order_on_defs by blast
show ?thesis
proof
assume *: "wf(r - Id)"
show "\<forall>A \<le> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r)"
proof(clarify)
fix A assume **: "A \<le> Field r" and ***: "A \<noteq> {}"
hence "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id"
using 1 * unfolding wf_eq_minimal2 by simp
moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. ((a,a') \<in> r) = ((a',a) \<notin> r - Id)"
using Linear_order_in_diff_Id[of r] ** LI by blast
ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r" by blast
qed
next
assume *: "\<forall>A \<le> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r)"
show "wf(r - Id)"
proof(unfold wf_eq_minimal2, clarify)
fix A assume **: "A \<le> Field(r - Id)" and ***: "A \<noteq> {}"
hence "\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r"
using 1 * by simp
moreover have "\<forall>a \<in> A. \<forall>a' \<in> A. ((a,a') \<in> r) = ((a',a) \<notin> r - Id)"
using Linear_order_in_diff_Id[of r] ** LI mono_Field[of "r - Id" r] by blast
ultimately show "\<exists>a \<in> A. \<forall>a' \<in> A. (a',a) \<notin> r - Id" by blast
qed
qed
qed
corollary Linear_order_Well_order_iff:
assumes "Linear_order r"
shows "Well_order r = (\<forall>A \<le> Field r. A \<noteq> {} \<longrightarrow> (\<exists>a \<in> A. \<forall>a' \<in> A. (a,a') \<in> r))"
using assms unfolding well_order_on_def using Linear_order_wf_diff_Id[of r] by blast
end