src/HOL/Library/Product_ord.thy
author haftmann
Thu, 20 May 2010 17:29:43 +0200
changeset 37026 7e8979a155ae
parent 31040 996ae76c9eda
child 37678 0040bafffdef
permissions -rw-r--r--
operations default, map_entry, map_default; more lemmas

(*  Title:      HOL/Library/Product_ord.thy
    Author:     Norbert Voelker
*)

header {* Order on product types *}

theory Product_ord
imports Main
begin

instantiation "*" :: (ord, ord) ord
begin

definition
  prod_le_def [code del]: "x \<le> y \<longleftrightarrow> fst x < fst y \<or> fst x \<le> fst y \<and> snd x \<le> snd y"

definition
  prod_less_def [code del]: "x < y \<longleftrightarrow> fst x < fst y \<or> fst x \<le> fst y \<and> snd x < snd y"

instance ..

end

lemma [code]:
  "(x1\<Colon>'a\<Colon>{ord, eq}, y1) \<le> (x2, y2) \<longleftrightarrow> x1 < x2 \<or> x1 \<le> x2 \<and> y1 \<le> y2"
  "(x1\<Colon>'a\<Colon>{ord, eq}, y1) < (x2, y2) \<longleftrightarrow> x1 < x2 \<or> x1 \<le> x2 \<and> y1 < y2"
  unfolding prod_le_def prod_less_def by simp_all

instance * :: (preorder, preorder) preorder proof
qed (auto simp: prod_le_def prod_less_def less_le_not_le intro: order_trans)

instance * :: (order, order) order proof
qed (auto simp add: prod_le_def)

instance * :: (linorder, linorder) linorder proof
qed (auto simp: prod_le_def)

instantiation * :: (linorder, linorder) distrib_lattice
begin

definition
  inf_prod_def: "(inf \<Colon> 'a \<times> 'b \<Rightarrow> _ \<Rightarrow> _) = min"

definition
  sup_prod_def: "(sup \<Colon> 'a \<times> 'b \<Rightarrow> _ \<Rightarrow> _) = max"

instance proof
qed (auto simp add: inf_prod_def sup_prod_def min_max.sup_inf_distrib1)

end

instantiation * :: (bot, bot) bot
begin

definition
  bot_prod_def: "bot = (bot, bot)"

instance proof
qed (auto simp add: bot_prod_def prod_le_def)

end

instantiation * :: (top, top) top
begin

definition
  top_prod_def: "top = (top, top)"

instance proof
qed (auto simp add: top_prod_def prod_le_def)

end

end