Implemented mechanism for attaching auxiliary code to consts_code and
types_code declarations.
(* Title: Pure/codegen.ML
ID: $Id$
Author: Stefan Berghofer, TU Muenchen
Generic code generator.
*)
signature CODEGEN =
sig
val quiet_mode : bool ref
val message : string -> unit
val mode : string list ref
val margin : int ref
datatype 'a mixfix =
Arg
| Ignore
| Module
| Pretty of Pretty.T
| Quote of 'a;
type deftab
type codegr
type 'a codegen
val add_codegen: string -> term codegen -> theory -> theory
val add_tycodegen: string -> typ codegen -> theory -> theory
val add_attribute: string -> (Args.T list -> theory attribute * Args.T list) -> theory -> theory
val add_preprocessor: (theory -> thm list -> thm list) -> theory -> theory
val preprocess: theory -> thm list -> thm list
val print_codegens: theory -> unit
val generate_code: theory -> (string * string) list -> (string * string) list
val generate_code_i: theory -> (string * term) list -> (string * string) list
val assoc_consts: (xstring * string option * (term mixfix list *
(string * string) list)) list -> theory -> theory
val assoc_consts_i: (xstring * typ option * (term mixfix list *
(string * string) list)) list -> theory -> theory
val assoc_types: (xstring * (typ mixfix list *
(string * string) list)) list -> theory -> theory
val get_assoc_code: theory -> string -> typ ->
(term mixfix list * (string * string) list) option
val get_assoc_type: theory -> string ->
(typ mixfix list * (string * string) list) option
val invoke_codegen: theory -> deftab -> string -> string -> bool ->
codegr * term -> codegr * Pretty.T
val invoke_tycodegen: theory -> deftab -> string -> string -> bool ->
codegr * typ -> codegr * Pretty.T
val mk_id: string -> string
val mk_const_id: theory -> string -> string -> string -> string
val mk_type_id: theory -> string -> string -> string -> string
val thyname_of_type: string -> theory -> string
val thyname_of_const: string -> theory -> string
val rename_terms: term list -> term list
val rename_term: term -> term
val new_names: term -> string list -> string list
val new_name: term -> string -> string
val get_defn: theory -> deftab -> string -> typ ->
((typ * (string * (term list * term))) * int option) option
val is_instance: theory -> typ -> typ -> bool
val parens: Pretty.T -> Pretty.T
val mk_app: bool -> Pretty.T -> Pretty.T list -> Pretty.T
val eta_expand: term -> term list -> int -> term
val strip_tname: string -> string
val mk_type: bool -> typ -> Pretty.T
val mk_term_of: theory -> string -> bool -> typ -> Pretty.T
val mk_gen: theory -> string -> bool -> string list -> string -> typ -> Pretty.T
val test_fn: (int -> (string * term) list option) ref
val test_term: theory -> int -> int -> term -> (string * term) list option
val parse_mixfix: (string -> 'a) -> string -> 'a mixfix list
val mk_deftab: theory -> deftab
end;
structure Codegen : CODEGEN =
struct
val quiet_mode = ref true;
fun message s = if !quiet_mode then () else writeln s;
val mode = ref ([] : string list);
val margin = ref 80;
(**** Mixfix syntax ****)
datatype 'a mixfix =
Arg
| Ignore
| Module
| Pretty of Pretty.T
| Quote of 'a;
fun is_arg Arg = true
| is_arg Ignore = true
| is_arg _ = false;
fun quotes_of [] = []
| quotes_of (Quote q :: ms) = q :: quotes_of ms
| quotes_of (_ :: ms) = quotes_of ms;
fun args_of [] xs = ([], xs)
| args_of (Arg :: ms) (x :: xs) = apfst (cons x) (args_of ms xs)
| args_of (Ignore :: ms) (_ :: xs) = args_of ms xs
| args_of (_ :: ms) xs = args_of ms xs;
fun num_args x = length (List.filter is_arg x);
(**** theory data ****)
(* preprocessed definition table *)
type deftab =
(typ * (* type of constant *)
(string * (* name of theory containing definition of constant *)
(term list * (* parameters *)
term))) (* right-hand side *)
list Symtab.table;
(* code dependency graph *)
type codegr =
(exn option * (* slot for arbitrary data *)
string * (* name of structure containing piece of code *)
string) (* piece of code *)
Graph.T;
(* type of code generators *)
type 'a codegen =
theory -> (* theory in which generate_code was called *)
deftab -> (* definition table (for efficiency) *)
codegr -> (* code dependency graph *)
string -> (* node name of caller (for recording dependencies) *)
string -> (* theory name of caller (for modular code generation) *)
bool -> (* whether to parenthesize generated expression *)
'a -> (* item to generate code from *)
(codegr * Pretty.T) option;
(* parameters for random testing *)
type test_params =
{size: int, iterations: int, default_type: typ option};
fun merge_test_params
{size = size1, iterations = iterations1, default_type = default_type1}
{size = size2, iterations = iterations2, default_type = default_type2} =
{size = Int.max (size1, size2),
iterations = Int.max (iterations1, iterations2),
default_type = case default_type1 of
NONE => default_type2
| _ => default_type1};
val default_test_params : test_params =
{size = 10, iterations = 100, default_type = NONE};
fun set_size size ({iterations, default_type, ...} : test_params) =
{size = size, iterations = iterations, default_type = default_type};
fun set_iterations iterations ({size, default_type, ...} : test_params) =
{size = size, iterations = iterations, default_type = default_type};
fun set_default_type s thy ({size, iterations, ...} : test_params) =
{size = size, iterations = iterations,
default_type = SOME (typ_of (read_ctyp thy s))};
(* data kind 'Pure/codegen' *)
structure CodegenData = TheoryDataFun
(struct
val name = "Pure/codegen";
type T =
{codegens : (string * term codegen) list,
tycodegens : (string * typ codegen) list,
consts : ((string * typ) * (term mixfix list * (string * string) list)) list,
types : (string * (typ mixfix list * (string * string) list)) list,
attrs: (string * (Args.T list -> theory attribute * Args.T list)) list,
preprocs: (stamp * (theory -> thm list -> thm list)) list,
test_params: test_params};
val empty =
{codegens = [], tycodegens = [], consts = [], types = [], attrs = [],
preprocs = [], test_params = default_test_params};
val copy = I;
val extend = I;
fun merge _
({codegens = codegens1, tycodegens = tycodegens1,
consts = consts1, types = types1, attrs = attrs1,
preprocs = preprocs1, test_params = test_params1},
{codegens = codegens2, tycodegens = tycodegens2,
consts = consts2, types = types2, attrs = attrs2,
preprocs = preprocs2, test_params = test_params2}) =
{codegens = merge_alists' codegens1 codegens2,
tycodegens = merge_alists' tycodegens1 tycodegens2,
consts = merge_alists consts1 consts2,
types = merge_alists types1 types2,
attrs = merge_alists attrs1 attrs2,
preprocs = merge_alists' preprocs1 preprocs2,
test_params = merge_test_params test_params1 test_params2};
fun print _ ({codegens, tycodegens, ...} : T) =
Pretty.writeln (Pretty.chunks
[Pretty.strs ("term code generators:" :: map fst codegens),
Pretty.strs ("type code generators:" :: map fst tycodegens)]);
end);
val _ = Context.add_setup [CodegenData.init];
val print_codegens = CodegenData.print;
(**** access parameters for random testing ****)
fun get_test_params thy = #test_params (CodegenData.get thy);
fun map_test_params f thy =
let val {codegens, tycodegens, consts, types, attrs, preprocs, test_params} =
CodegenData.get thy;
in CodegenData.put {codegens = codegens, tycodegens = tycodegens,
consts = consts, types = types, attrs = attrs, preprocs = preprocs,
test_params = f test_params} thy
end;
(**** add new code generators to theory ****)
fun add_codegen name f thy =
let val {codegens, tycodegens, consts, types, attrs, preprocs, test_params} =
CodegenData.get thy
in (case assoc (codegens, name) of
NONE => CodegenData.put {codegens = (name, f) :: codegens,
tycodegens = tycodegens, consts = consts, types = types,
attrs = attrs, preprocs = preprocs, test_params = test_params} thy
| SOME _ => error ("Code generator " ^ name ^ " already declared"))
end;
fun add_tycodegen name f thy =
let val {codegens, tycodegens, consts, types, attrs, preprocs, test_params} =
CodegenData.get thy
in (case assoc (tycodegens, name) of
NONE => CodegenData.put {tycodegens = (name, f) :: tycodegens,
codegens = codegens, consts = consts, types = types,
attrs = attrs, preprocs = preprocs, test_params = test_params} thy
| SOME _ => error ("Code generator " ^ name ^ " already declared"))
end;
(**** code attribute ****)
fun add_attribute name att thy =
let val {codegens, tycodegens, consts, types, attrs, preprocs, test_params} =
CodegenData.get thy
in (case assoc (attrs, name) of
NONE => CodegenData.put {tycodegens = tycodegens,
codegens = codegens, consts = consts, types = types,
attrs = if name = "" then attrs @ [(name, att)] else (name, att) :: attrs,
preprocs = preprocs,
test_params = test_params} thy
| SOME _ => error ("Code attribute " ^ name ^ " already declared"))
end;
fun mk_parser (a, p) = (if a = "" then Scan.succeed "" else Args.$$$ a) |-- p;
val code_attr =
Attrib.syntax (Scan.peek (fn thy => foldr op || Scan.fail (map mk_parser
(#attrs (CodegenData.get thy)))));
val _ = Context.add_setup
[Attrib.add_attributes
[("code", (code_attr, K Attrib.undef_local_attribute),
"declare theorems for code generation")]];
(**** preprocessors ****)
fun add_preprocessor p thy =
let val {codegens, tycodegens, consts, types, attrs, preprocs, test_params} =
CodegenData.get thy
in CodegenData.put {tycodegens = tycodegens,
codegens = codegens, consts = consts, types = types,
attrs = attrs, preprocs = (stamp (), p) :: preprocs,
test_params = test_params} thy
end;
fun preprocess thy ths =
let val {preprocs, ...} = CodegenData.get thy
in Library.foldl (fn (ths, (_, f)) => f thy ths) (ths, preprocs) end;
fun unfold_attr (thy, eqn) =
let
val (name, _) = dest_Const (head_of
(fst (Logic.dest_equals (prop_of eqn))));
fun prep thy = map (fn th =>
if name mem term_consts (prop_of th) then
rewrite_rule [eqn] (Thm.transfer thy th)
else th)
in (add_preprocessor prep thy, eqn) end;
val _ = Context.add_setup [add_attribute "unfold" (Scan.succeed unfold_attr)];
(**** associate constants with target language code ****)
fun gen_assoc_consts prep_type xs thy = Library.foldl (fn (thy, (s, tyopt, syn)) =>
let
val {codegens, tycodegens, consts, types, attrs, preprocs, test_params} =
CodegenData.get thy;
val cname = Sign.intern_const thy s;
in
(case Sign.const_type thy cname of
SOME T =>
let val T' = (case tyopt of
NONE => T
| SOME ty =>
let val U = prep_type thy ty
in if Sign.typ_instance thy (U, T) then U
else error ("Illegal type constraint for constant " ^ cname)
end)
in (case assoc (consts, (cname, T')) of
NONE => CodegenData.put {codegens = codegens,
tycodegens = tycodegens,
consts = ((cname, T'), syn) :: consts,
types = types, attrs = attrs, preprocs = preprocs,
test_params = test_params} thy
| SOME _ => error ("Constant " ^ cname ^ " already associated with code"))
end
| _ => error ("Not a constant: " ^ s))
end) (thy, xs);
val assoc_consts_i = gen_assoc_consts (K I);
val assoc_consts = gen_assoc_consts (typ_of oo read_ctyp);
(**** associate types with target language types ****)
fun assoc_types xs thy = Library.foldl (fn (thy, (s, syn)) =>
let
val {codegens, tycodegens, consts, types, attrs, preprocs, test_params} =
CodegenData.get thy;
val tc = Sign.intern_type thy s
in
(case assoc (types, tc) of
NONE => CodegenData.put {codegens = codegens,
tycodegens = tycodegens, consts = consts,
types = (tc, syn) :: types, attrs = attrs,
preprocs = preprocs, test_params = test_params} thy
| SOME _ => error ("Type " ^ tc ^ " already associated with code"))
end) (thy, xs);
fun get_assoc_type thy s = assoc (#types (CodegenData.get thy), s);
(**** make valid ML identifiers ****)
fun is_ascii_letdig x = Symbol.is_ascii_letter x orelse
Symbol.is_ascii_digit x orelse Symbol.is_ascii_quasi x;
fun dest_sym s = (case split_last (snd (take_prefix (equal "\\") (explode s))) of
("<" :: "^" :: xs, ">") => (true, implode xs)
| ("<" :: xs, ">") => (false, implode xs)
| _ => sys_error "dest_sym");
fun mk_id s = if s = "" then "" else
let
fun check_str [] = []
| check_str xs = (case take_prefix is_ascii_letdig xs of
([], " " :: zs) => check_str zs
| ([], z :: zs) =>
if size z = 1 then string_of_int (ord z) :: check_str zs
else (case dest_sym z of
(true, "isub") => check_str zs
| (true, "isup") => "" :: check_str zs
| (ctrl, s') => (if ctrl then "ctrl_" ^ s' else s') :: check_str zs)
| (ys, zs) => implode ys :: check_str zs);
val s' = space_implode "_"
(List.concat (map (check_str o Symbol.explode) (NameSpace.unpack s)))
in
if Symbol.is_ascii_letter (hd (explode s')) then s' else "id_" ^ s'
end;
fun extrn thy f thyname s =
let
val xs = NameSpace.unpack s;
val s' = setmp NameSpace.long_names false (setmp NameSpace.short_names false
(setmp NameSpace.unique_names true (f thy))) s;
val xs' = NameSpace.unpack s'
in
if "modular" mem !mode andalso length xs = length xs' andalso hd xs' = thyname
then NameSpace.pack (tl xs') else s'
end;
(* thyname: theory name for caller *)
(* thyname': theory name for callee *)
(* if caller and callee reside in different theories, use qualified access *)
fun mk_const_id thy thyname thyname' s =
let
val s' = mk_id (extrn thy Sign.extern_const thyname' s);
val s'' = if s' mem ThmDatabase.ml_reserved then s' ^ "_const" else s'
in
if "modular" mem !mode andalso thyname <> thyname' andalso thyname' <> ""
then thyname' ^ "." ^ s'' else s''
end;
fun mk_type_id' f thy thyname thyname' s =
let
val s' = mk_id (extrn thy Sign.extern_type thyname' s);
val s'' = f (if s' mem ThmDatabase.ml_reserved then s' ^ "_type" else s')
in
if "modular" mem !mode andalso thyname <> thyname' andalso thyname' <> ""
then thyname' ^ "." ^ s'' else s''
end;
val mk_type_id = mk_type_id' I;
fun theory_of_type s thy =
if Sign.declared_tyname thy s
then SOME (if_none (get_first (theory_of_type s) (Theory.parents_of thy)) thy)
else NONE;
fun theory_of_const s thy =
if Sign.declared_const thy s
then SOME (if_none (get_first (theory_of_const s) (Theory.parents_of thy)) thy)
else NONE;
fun thyname_of_type s thy = (case theory_of_type s thy of
NONE => error ("thyname_of_type: no such type: " ^ quote s)
| SOME thy' => Context.theory_name thy');
fun thyname_of_const s thy = (case theory_of_const s thy of
NONE => error ("thyname_of_const: no such constant: " ^ quote s)
| SOME thy' => Context.theory_name thy');
fun rename_terms ts =
let
val names = foldr add_term_names
(map (fst o fst) (Drule.vars_of_terms ts)) ts;
val reserved = names inter ThmDatabase.ml_reserved;
val (illegal, alt_names) = split_list (List.mapPartial (fn s =>
let val s' = mk_id s in if s = s' then NONE else SOME (s, s') end) names)
val ps = (reserved @ illegal) ~~
variantlist (map (suffix "'") reserved @ alt_names, names);
fun rename_id s = getOpt (assoc (ps, s), s);
fun rename (Var ((a, i), T)) = Var ((rename_id a, i), T)
| rename (Free (a, T)) = Free (rename_id a, T)
| rename (Abs (s, T, t)) = Abs (s, T, rename t)
| rename (t $ u) = rename t $ rename u
| rename t = t;
in
map rename ts
end;
val rename_term = hd o rename_terms o single;
(**** retrieve definition of constant ****)
fun is_instance thy T1 T2 =
Sign.typ_instance thy (T1, Type.varifyT T2);
fun get_assoc_code thy s T = Option.map snd (find_first (fn ((s', T'), _) =>
s = s' andalso is_instance thy T T') (#consts (CodegenData.get thy)));
fun get_aux_code xs = List.mapPartial (fn (m, code) =>
if m = "" orelse m mem !mode then SOME code else NONE) xs;
fun mk_deftab thy =
let
val axmss = map (fn thy' =>
(Context.theory_name thy', snd (#axioms (Theory.rep_theory thy'))))
(thy :: Theory.ancestors_of thy);
fun prep_def def = (case preprocess thy [def] of
[def'] => prop_of def' | _ => error "mk_deftab: bad preprocessor");
fun dest t =
let
val (lhs, rhs) = Logic.dest_equals t;
val (c, args) = strip_comb lhs;
val (s, T) = dest_Const c
in if forall is_Var args then SOME (s, (T, (args, rhs))) else NONE
end handle TERM _ => NONE;
fun add_def thyname (defs, (name, t)) = (case dest t of
NONE => defs
| SOME _ => (case dest (prep_def (Thm.get_axiom thy name)) of
NONE => defs
| SOME (s, (T, (args, rhs))) => Symtab.update
((s, (T, (thyname, split_last (rename_terms (args @ [rhs])))) ::
if_none (Symtab.lookup (defs, s)) []), defs)))
in
foldl (fn ((thyname, axms), defs) =>
Symtab.foldl (add_def thyname) (defs, axms)) Symtab.empty axmss
end;
fun get_defn thy defs s T = (case Symtab.lookup (defs, s) of
NONE => NONE
| SOME ds =>
let val i = find_index (is_instance thy T o fst) ds
in if i >= 0 then
SOME (List.nth (ds, i), if length ds = 1 then NONE else SOME i)
else NONE
end);
(**** invoke suitable code generator for term / type ****)
fun invoke_codegen thy defs dep thyname brack (gr, t) = (case get_first
(fn (_, f) => f thy defs gr dep thyname brack t) (#codegens (CodegenData.get thy)) of
NONE => error ("Unable to generate code for term:\n" ^
Sign.string_of_term thy t ^ "\nrequired by:\n" ^
commas (Graph.all_succs gr [dep]))
| SOME x => x);
fun invoke_tycodegen thy defs dep thyname brack (gr, T) = (case get_first
(fn (_, f) => f thy defs gr dep thyname brack T) (#tycodegens (CodegenData.get thy)) of
NONE => error ("Unable to generate code for type:\n" ^
Sign.string_of_typ thy T ^ "\nrequired by:\n" ^
commas (Graph.all_succs gr [dep]))
| SOME x => x);
(**** code generator for mixfix expressions ****)
fun parens p = Pretty.block [Pretty.str "(", p, Pretty.str ")"];
fun pretty_fn [] p = [p]
| pretty_fn (x::xs) p = Pretty.str ("fn " ^ x ^ " =>") ::
Pretty.brk 1 :: pretty_fn xs p;
fun pretty_mixfix _ _ [] [] _ = []
| pretty_mixfix module module' (Arg :: ms) (p :: ps) qs =
p :: pretty_mixfix module module' ms ps qs
| pretty_mixfix module module' (Ignore :: ms) ps qs =
pretty_mixfix module module' ms ps qs
| pretty_mixfix module module' (Module :: ms) ps qs =
(if "modular" mem !mode andalso module <> module'
then cons (Pretty.str (module' ^ ".")) else I)
(pretty_mixfix module module' ms ps qs)
| pretty_mixfix module module' (Pretty p :: ms) ps qs =
p :: pretty_mixfix module module' ms ps qs
| pretty_mixfix module module' (Quote _ :: ms) ps (q :: qs) =
q :: pretty_mixfix module module' ms ps qs;
(**** default code generators ****)
fun eta_expand t ts i =
let
val (Ts, _) = strip_type (fastype_of t);
val j = i - length ts
in
foldr (fn (T, t) => Abs ("x", T, t))
(list_comb (t, ts @ map Bound (j-1 downto 0))) (Library.take (j, Ts))
end;
fun mk_app _ p [] = p
| mk_app brack p ps = if brack then
Pretty.block (Pretty.str "(" ::
separate (Pretty.brk 1) (p :: ps) @ [Pretty.str ")"])
else Pretty.block (separate (Pretty.brk 1) (p :: ps));
fun new_names t xs = variantlist (map mk_id xs,
map (fst o fst o dest_Var) (term_vars t) union
add_term_names (t, ThmDatabase.ml_reserved));
fun new_name t x = hd (new_names t [x]);
fun default_codegen thy defs gr dep thyname brack t =
let
val (u, ts) = strip_comb t;
fun codegens brack = foldl_map (invoke_codegen thy defs dep thyname brack)
in (case u of
Var ((s, i), T) =>
let
val (gr', ps) = codegens true (gr, ts);
val (gr'', _) = invoke_tycodegen thy defs dep thyname false (gr', T)
in SOME (gr'', mk_app brack (Pretty.str (s ^
(if i=0 then "" else string_of_int i))) ps)
end
| Free (s, T) =>
let
val (gr', ps) = codegens true (gr, ts);
val (gr'', _) = invoke_tycodegen thy defs dep thyname false (gr', T)
in SOME (gr'', mk_app brack (Pretty.str s) ps) end
| Const (s, T) =>
(case get_assoc_code thy s T of
SOME (ms, aux) =>
let val i = num_args ms
in if length ts < i then
default_codegen thy defs gr dep thyname brack (eta_expand u ts i)
else
let
val (ts1, ts2) = args_of ms ts;
val (gr1, ps1) = codegens false (gr, ts1);
val (gr2, ps2) = codegens true (gr1, ts2);
val (gr3, ps3) = codegens false (gr2, quotes_of ms);
val (thyname', suffix) = (case get_defn thy defs s T of
NONE => (thyname_of_const s thy, "")
| SOME ((U, (thyname', _)), NONE) => (thyname', "")
| SOME ((U, (thyname', _)), SOME i) =>
(thyname', "_def" ^ string_of_int i));
val node_id = s ^ suffix;
val p = mk_app brack (Pretty.block
(pretty_mixfix thyname thyname' ms ps1 ps3)) ps2
in SOME (case try (Graph.get_node gr3) node_id of
NONE => (case get_aux_code aux of
[] => (gr3, p)
| xs => (Graph.add_edge (node_id, dep) (Graph.new_node
(node_id, (NONE, thyname', space_implode "\n" xs ^ "\n")) gr3), p))
| SOME _ => (Graph.add_edge (node_id, dep) gr3, p))
end
end
| NONE => (case get_defn thy defs s T of
NONE => NONE
| SOME ((U, (thyname', (args, rhs))), k) =>
let
val suffix = (case k of NONE => "" | SOME i => "_def" ^ string_of_int i);
val node_id = s ^ suffix;
val def_id = mk_const_id thy thyname' thyname' s ^ suffix;
val call_id = mk_const_id thy thyname thyname' s ^ suffix;
val (gr', ps) = codegens true (gr, ts);
in
SOME (Graph.add_edge (node_id, dep) gr' handle Graph.UNDEF _ =>
let
val _ = message ("expanding definition of " ^ s);
val (Ts, _) = strip_type T;
val (args', rhs') =
if not (null args) orelse null Ts then (args, rhs) else
let val v = Free (new_name rhs "x", hd Ts)
in ([v], betapply (rhs, v)) end;
val (gr1, p) = invoke_codegen thy defs node_id thyname' false
(Graph.add_edge (node_id, dep)
(Graph.new_node (node_id, (NONE, "", "")) gr'), rhs');
val (gr2, xs) = codegens false (gr1, args');
val (gr3, _) = invoke_tycodegen thy defs dep thyname false (gr2, T);
val (gr4, ty) = invoke_tycodegen thy defs node_id thyname' false (gr3, U);
in Graph.map_node node_id (K (NONE, thyname', Pretty.string_of
(Pretty.block (separate (Pretty.brk 1)
(if null args' then
[Pretty.str ("val " ^ def_id ^ " :"), ty]
else Pretty.str ("fun " ^ def_id) :: xs) @
[Pretty.str " =", Pretty.brk 1, p, Pretty.str ";"])) ^ "\n\n")) gr4
end, mk_app brack (Pretty.str call_id) ps)
end))
| Abs _ =>
let
val (bs, Ts) = ListPair.unzip (strip_abs_vars u);
val t = strip_abs_body u
val bs' = new_names t bs;
val (gr1, ps) = codegens true (gr, ts);
val (gr2, p) = invoke_codegen thy defs dep thyname false
(gr1, subst_bounds (map Free (rev (bs' ~~ Ts)), t));
in
SOME (gr2, mk_app brack (Pretty.block (Pretty.str "(" :: pretty_fn bs' p @
[Pretty.str ")"])) ps)
end
| _ => NONE)
end;
fun default_tycodegen thy defs gr dep thyname brack (TVar ((s, i), _)) =
SOME (gr, Pretty.str (s ^ (if i = 0 then "" else string_of_int i)))
| default_tycodegen thy defs gr dep thyname brack (TFree (s, _)) =
SOME (gr, Pretty.str s)
| default_tycodegen thy defs gr dep thyname brack (Type (s, Ts)) =
(case assoc (#types (CodegenData.get thy), s) of
NONE => NONE
| SOME (ms, aux) =>
let
val (gr', ps) = foldl_map
(invoke_tycodegen thy defs dep thyname false)
(gr, fst (args_of ms Ts));
val (gr'', qs) = foldl_map
(invoke_tycodegen thy defs dep thyname false)
(gr', quotes_of ms);
val thyname' = thyname_of_type s thy;
val node_id = s ^ " (type)";
val p = Pretty.block (pretty_mixfix thyname thyname' ms ps qs)
in SOME (case try (Graph.get_node gr'') node_id of
NONE => (case get_aux_code aux of
[] => (gr'', p)
| xs => (Graph.add_edge (node_id, dep) (Graph.new_node
(node_id, (NONE, thyname', space_implode "\n" xs ^ "\n")) gr''), p))
| SOME _ => (Graph.add_edge (node_id, dep) gr'', p))
end);
val _ = Context.add_setup
[add_codegen "default" default_codegen,
add_tycodegen "default" default_tycodegen];
fun mk_struct name s = "structure " ^ name ^ " =\nstruct\n\n" ^ s ^ "end;\n";
fun add_to_module name s ms =
overwrite (ms, (name, the (assoc (ms, name)) ^ s));
fun output_code gr xs =
let
val code =
map (fn s => (s, Graph.get_node gr s)) (rev (Graph.all_preds gr xs))
fun string_of_cycle (a :: b :: cs) =
let val SOME (x, y) = get_first (fn (x, (_, a', _)) =>
if a = a' then Option.map (pair x)
(find_first (equal b o #2 o Graph.get_node gr)
(Graph.imm_succs gr x))
else NONE) code
in x ^ " called by " ^ y ^ "\n" ^ string_of_cycle (b :: cs) end
| string_of_cycle _ = ""
in
if "modular" mem !mode then
let
val modules = distinct (map (#2 o snd) code);
val mod_gr = foldr (uncurry Graph.add_edge_acyclic)
(foldr (uncurry (Graph.new_node o rpair ())) Graph.empty modules)
(List.concat (map (fn (s, (_, thyname, _)) => map (pair thyname)
(filter_out (equal thyname) (map (#2 o Graph.get_node gr)
(Graph.imm_succs gr s)))) code));
val modules' =
rev (Graph.all_preds mod_gr (map (#2 o Graph.get_node gr) xs))
in
foldl (fn ((_, (_, thyname, s)), ms) => add_to_module thyname s ms)
(map (rpair "") modules') code
end handle Graph.CYCLES (cs :: _) =>
error ("Cyclic dependency of modules:\n" ^ commas cs ^
"\n" ^ string_of_cycle cs)
else [("Generated", implode (map (#3 o snd) code))]
end;
fun gen_generate_code prep_term thy =
setmp print_mode [] (Pretty.setmp_margin (!margin) (fn xs =>
let
val defs = mk_deftab thy;
val gr = Graph.new_node ("<Top>", (NONE, "Generated", "")) Graph.empty;
fun expand (t as Abs _) = t
| expand t = (case fastype_of t of
Type ("fun", [T, U]) => Abs ("x", T, t $ Bound 0) | _ => t);
val (gr', ps) = foldl_map (fn (gr, (s, t)) => apsnd (pair s)
(invoke_codegen thy defs "<Top>" "Generated" false (gr, t)))
(gr, map (apsnd (expand o prep_term thy)) xs);
val code =
space_implode "\n\n" (map (fn (s', p) => Pretty.string_of (Pretty.block
[Pretty.str ("val " ^ s' ^ " ="), Pretty.brk 1, p, Pretty.str ";"])) ps) ^
"\n\n"
in
map (fn (name, s) => (name, mk_struct name s))
(add_to_module "Generated" code (output_code gr' ["<Top>"]))
end));
val generate_code_i = gen_generate_code (K I);
val generate_code = gen_generate_code
(fn thy => term_of o read_cterm thy o rpair TypeInfer.logicT);
(**** Reflection ****)
val strip_tname = implode o tl o explode;
fun pretty_list xs = Pretty.block (Pretty.str "[" ::
List.concat (separate [Pretty.str ",", Pretty.brk 1] (map single xs)) @
[Pretty.str "]"]);
fun mk_type p (TVar ((s, i), _)) = Pretty.str
(strip_tname s ^ (if i = 0 then "" else string_of_int i) ^ "T")
| mk_type p (TFree (s, _)) = Pretty.str (strip_tname s ^ "T")
| mk_type p (Type (s, Ts)) = (if p then parens else I) (Pretty.block
[Pretty.str "Type", Pretty.brk 1, Pretty.str ("(\"" ^ s ^ "\","),
Pretty.brk 1, pretty_list (map (mk_type false) Ts), Pretty.str ")"]);
fun mk_term_of thy thyname p (TVar ((s, i), _)) = Pretty.str
(strip_tname s ^ (if i = 0 then "" else string_of_int i) ^ "F")
| mk_term_of thy thyname p (TFree (s, _)) = Pretty.str (strip_tname s ^ "F")
| mk_term_of thy thyname p (Type (s, Ts)) = (if p then parens else I)
(Pretty.block (separate (Pretty.brk 1)
(Pretty.str (mk_type_id' (fn s' => "term_of_" ^ s')
thy thyname (thyname_of_type s thy) s) ::
List.concat (map (fn T =>
[mk_term_of thy thyname true T, mk_type true T]) Ts))));
(**** Test data generators ****)
fun mk_gen thy thyname p xs a (TVar ((s, i), _)) = Pretty.str
(strip_tname s ^ (if i = 0 then "" else string_of_int i) ^ "G")
| mk_gen thy thyname p xs a (TFree (s, _)) = Pretty.str (strip_tname s ^ "G")
| mk_gen thy thyname p xs a (Type (s, Ts)) = (if p then parens else I)
(Pretty.block (separate (Pretty.brk 1)
(Pretty.str (mk_type_id' (fn s' => "gen_" ^ s')
thy thyname (thyname_of_type s thy) s ^
(if s mem xs then "'" else "")) ::
map (mk_gen thy thyname true xs a) Ts @
(if s mem xs then [Pretty.str a] else []))));
val test_fn : (int -> (string * term) list option) ref = ref (fn _ => NONE);
fun test_term thy sz i = setmp print_mode [] (fn t =>
let
val _ = assert (null (term_tvars t) andalso null (term_tfrees t))
"Term to be tested contains type variables";
val _ = assert (null (term_vars t))
"Term to be tested contains schematic variables";
val frees = map dest_Free (term_frees t);
val szname = variant (map fst frees) "i";
val code = space_implode "\n" (map snd
(setmp mode ["term_of", "test"] (generate_code_i thy)
[("testf", list_abs_free (frees, t))]));
val s = "structure TestTerm =\nstruct\n\n" ^ code ^
"\nopen Generated;\n\n" ^ Pretty.string_of
(Pretty.block [Pretty.str "val () = Codegen.test_fn :=",
Pretty.brk 1, Pretty.str ("(fn " ^ szname ^ " =>"), Pretty.brk 1,
Pretty.blk (0, [Pretty.str "let", Pretty.brk 1,
Pretty.blk (0, separate Pretty.fbrk (map (fn (s, T) =>
Pretty.block [Pretty.str ("val " ^ mk_id s ^ " ="), Pretty.brk 1,
mk_gen thy "" false [] "" T, Pretty.brk 1,
Pretty.str (szname ^ ";")]) frees)),
Pretty.brk 1, Pretty.str "in", Pretty.brk 1,
Pretty.block [Pretty.str "if ",
mk_app false (Pretty.str "testf") (map (Pretty.str o mk_id o fst) frees),
Pretty.brk 1, Pretty.str "then NONE",
Pretty.brk 1, Pretty.str "else ",
Pretty.block [Pretty.str "SOME ", Pretty.block (Pretty.str "[" ::
List.concat (separate [Pretty.str ",", Pretty.brk 1]
(map (fn (s, T) => [Pretty.block
[Pretty.str ("(" ^ Library.quote (Symbol.escape s) ^ ","), Pretty.brk 1,
mk_app false (mk_term_of thy "" false T)
[Pretty.str (mk_id s)], Pretty.str ")"]]) frees)) @
[Pretty.str "]"])]],
Pretty.brk 1, Pretty.str "end"]), Pretty.str ");"]) ^
"\n\nend;\n";
val _ = use_text Context.ml_output false s;
fun iter f k = if k > i then NONE
else (case (f () handle Match =>
(warning "Exception Match raised in generated code"; NONE)) of
NONE => iter f (k+1) | SOME x => SOME x);
fun test k = if k > sz then NONE
else (priority ("Test data size: " ^ string_of_int k);
case iter (fn () => !test_fn k) 1 of
NONE => test (k+1) | SOME x => SOME x);
in test 0 end);
fun test_goal ({size, iterations, default_type}, tvinsts) i st =
let
val thy = Toplevel.theory_of st;
fun strip (Const ("all", _) $ Abs (_, _, t)) = strip t
| strip t = t;
val (gi, frees) = Logic.goal_params
(prop_of (snd (snd (Proof.get_goal (Toplevel.proof_of st))))) i;
val gi' = ObjectLogic.atomize_term thy (map_term_types
(map_type_tfree (fn p as (s, _) => getOpt (assoc (tvinsts, s),
getOpt (default_type,TFree p)))) (subst_bounds (frees, strip gi)));
in case test_term (Toplevel.theory_of st) size iterations gi' of
NONE => writeln "No counterexamples found."
| SOME cex => writeln ("Counterexample found:\n" ^
Pretty.string_of (Pretty.chunks (map (fn (s, t) =>
Pretty.block [Pretty.str (s ^ " ="), Pretty.brk 1,
Sign.pretty_term thy t]) cex)))
end;
(**** Interface ****)
val str = setmp print_mode [] Pretty.str;
fun parse_mixfix rd s =
(case Scan.finite Symbol.stopper (Scan.repeat
( $$ "_" >> K Arg
|| $$ "?" >> K Ignore
|| $$ "\\<module>" >> K Module
|| $$ "/" |-- Scan.repeat ($$ " ") >> (Pretty o Pretty.brk o length)
|| $$ "{" |-- $$ "*" |-- Scan.repeat1
( $$ "'" |-- Scan.one Symbol.not_eof
|| Scan.unless ($$ "*" -- $$ "}") (Scan.one Symbol.not_eof)) --|
$$ "*" --| $$ "}" >> (Quote o rd o implode)
|| Scan.repeat1
( $$ "'" |-- Scan.one Symbol.not_eof
|| Scan.unless ($$ "_" || $$ "?" || $$ "\\<module>" || $$ "/" || $$ "{" |-- $$ "*")
(Scan.one Symbol.not_eof)) >> (Pretty o str o implode)))
(Symbol.explode s) of
(p, []) => p
| _ => error ("Malformed annotation: " ^ quote s));
val _ = Context.add_setup
[assoc_types [("fun", (parse_mixfix (K dummyT) "(_ ->/ _)",
[("term_of",
"fun term_of_fun_type _ T _ U _ = Free (\"<function>\", T --> U);\n"),
("test",
"fun gen_fun_type _ G i =\n\
\ let\n\
\ val f = ref (fn x => raise ERROR);\n\
\ val _ = (f := (fn x =>\n\
\ let\n\
\ val y = G i;\n\
\ val f' = !f\n\
\ in (f := (fn x' => if x = x' then y else f' x'); y) end))\n\
\ in (fn x => !f x) end;\n")]))]];
structure P = OuterParse and K = OuterSyntax.Keyword;
fun strip_newlines s = implode (fst (take_suffix (equal "\n")
(snd (take_prefix (equal "\n") (explode s))))) ^ "\n";
val parse_attach = Scan.repeat (P.$$$ "attach" |--
Scan.optional (P.$$$ "(" |-- P.xname --| P.$$$ ")") "" --
(P.verbatim >> strip_newlines));
val assoc_typeP =
OuterSyntax.command "types_code"
"associate types with target language types" K.thy_decl
(Scan.repeat1 (P.xname --| P.$$$ "(" -- P.string --| P.$$$ ")" -- parse_attach) >>
(fn xs => Toplevel.theory (fn thy => assoc_types
(map (fn ((name, mfx), aux) => (name, (parse_mixfix
(typ_of o read_ctyp thy) mfx, aux))) xs) thy)));
val assoc_constP =
OuterSyntax.command "consts_code"
"associate constants with target language code" K.thy_decl
(Scan.repeat1
(P.xname -- (Scan.option (P.$$$ "::" |-- P.typ)) --|
P.$$$ "(" -- P.string --| P.$$$ ")" -- parse_attach) >>
(fn xs => Toplevel.theory (fn thy => assoc_consts
(map (fn (((name, optype), mfx), aux) => (name, optype, (parse_mixfix
(term_of o read_cterm thy o rpair TypeInfer.logicT) mfx, aux)))
xs) thy)));
val generate_codeP =
OuterSyntax.command "generate_code" "generates code for terms" K.thy_decl
(Scan.option (P.$$$ "(" |-- P.name --| P.$$$ ")") --
Scan.optional (P.$$$ "[" |-- P.enum "," P.xname --| P.$$$ "]") (!mode) --
Scan.repeat1 (P.name --| P.$$$ "=" -- P.term) >>
(fn ((opt_fname, mode'), xs) => Toplevel.theory (fn thy =>
let val code = setmp mode mode' (generate_code thy) xs
in ((case opt_fname of
NONE => use_text Context.ml_output false
(space_implode "\n" (map snd code) ^ "\nopen Generated;\n")
| SOME fname =>
if "modular" mem mode' then
app (fn (name, s) => File.write
(Path.append (Path.unpack fname) (Path.basic (name ^ ".ML"))) s)
(("ROOT", implode (map (fn (name, _) =>
"use \"" ^ name ^ ".ML\";\n") code)) :: code)
else File.write (Path.unpack fname) (snd (hd code))); thy)
end)));
val params =
[("size", P.nat >> (K o set_size)),
("iterations", P.nat >> (K o set_iterations)),
("default_type", P.typ >> set_default_type)];
val parse_test_params = P.short_ident :-- (fn s =>
P.$$$ "=" |-- getOpt (assoc (params, s), Scan.fail)) >> snd;
fun parse_tyinst xs =
(P.type_ident --| P.$$$ "=" -- P.typ >> (fn (v, s) => fn thy =>
fn (x, ys) => (x, (v, typ_of (read_ctyp thy s)) :: ys))) xs;
fun app [] x = x
| app (f :: fs) x = app fs (f x);
val test_paramsP =
OuterSyntax.command "quickcheck_params" "set parameters for random testing" K.thy_decl
(P.$$$ "[" |-- P.list1 parse_test_params --| P.$$$ "]" >>
(fn fs => Toplevel.theory (fn thy =>
map_test_params (app (map (fn f => f thy) fs)) thy)));
val testP =
OuterSyntax.command "quickcheck" "try to find counterexample for subgoal" K.diag
(Scan.option (P.$$$ "[" |-- P.list1
( parse_test_params >> (fn f => fn thy => apfst (f thy))
|| parse_tyinst) --| P.$$$ "]") -- Scan.optional P.nat 1 >>
(fn (ps, g) => Toplevel.keep (fn st =>
test_goal (app (getOpt (Option.map
(map (fn f => f (Toplevel.sign_of st))) ps, []))
(get_test_params (Toplevel.theory_of st), [])) g st)));
val _ = OuterSyntax.add_keywords ["attach"];
val _ = OuterSyntax.add_parsers
[assoc_typeP, assoc_constP, generate_codeP, test_paramsP, testP];
end;