(* Author: L C Paulson, University of Cambridge
Author: Amine Chaieb, University of Cambridge
Author: Robert Himmelmann, TU Muenchen
Author: Brian Huffman, Portland State University
*)
section \<open>Abstract Topology 2\<close>
theory Abstract_Topology_2
imports
Elementary_Topology
Abstract_Topology
"HOL-Library.Indicator_Function"
begin
text \<open>Combination of Elementary and Abstract Topology\<close>
(* FIXME: move elsewhere *)
lemma approachable_lt_le: "(\<exists>(d::real) > 0. \<forall>x. f x < d \<longrightarrow> P x) \<longleftrightarrow> (\<exists>d>0. \<forall>x. f x \<le> d \<longrightarrow> P x)"
apply auto
apply (rule_tac x="d/2" in exI)
apply auto
done
lemma approachable_lt_le2: \<comment> \<open>like the above, but pushes aside an extra formula\<close>
"(\<exists>(d::real) > 0. \<forall>x. Q x \<longrightarrow> f x < d \<longrightarrow> P x) \<longleftrightarrow> (\<exists>d>0. \<forall>x. f x \<le> d \<longrightarrow> Q x \<longrightarrow> P x)"
apply auto
apply (rule_tac x="d/2" in exI, auto)
done
lemma triangle_lemma:
fixes x y z :: real
assumes x: "0 \<le> x"
and y: "0 \<le> y"
and z: "0 \<le> z"
and xy: "x\<^sup>2 \<le> y\<^sup>2 + z\<^sup>2"
shows "x \<le> y + z"
proof -
have "y\<^sup>2 + z\<^sup>2 \<le> y\<^sup>2 + 2 * y * z + z\<^sup>2"
using z y by simp
with xy have th: "x\<^sup>2 \<le> (y + z)\<^sup>2"
by (simp add: power2_eq_square field_simps)
from y z have yz: "y + z \<ge> 0"
by arith
from power2_le_imp_le[OF th yz] show ?thesis .
qed
lemma isCont_indicator:
fixes x :: "'a::t2_space"
shows "isCont (indicator A :: 'a \<Rightarrow> real) x = (x \<notin> frontier A)"
proof auto
fix x
assume cts_at: "isCont (indicator A :: 'a \<Rightarrow> real) x" and fr: "x \<in> frontier A"
with continuous_at_open have 1: "\<forall>V::real set. open V \<and> indicator A x \<in> V \<longrightarrow>
(\<exists>U::'a set. open U \<and> x \<in> U \<and> (\<forall>y\<in>U. indicator A y \<in> V))" by auto
show False
proof (cases "x \<in> A")
assume x: "x \<in> A"
hence "indicator A x \<in> ({0<..<2} :: real set)" by simp
hence "\<exists>U. open U \<and> x \<in> U \<and> (\<forall>y\<in>U. indicator A y \<in> ({0<..<2} :: real set))"
using 1 open_greaterThanLessThan by blast
then guess U .. note U = this
hence "\<forall>y\<in>U. indicator A y > (0::real)"
unfolding greaterThanLessThan_def by auto
hence "U \<subseteq> A" using indicator_eq_0_iff by force
hence "x \<in> interior A" using U interiorI by auto
thus ?thesis using fr unfolding frontier_def by simp
next
assume x: "x \<notin> A"
hence "indicator A x \<in> ({-1<..<1} :: real set)" by simp
hence "\<exists>U. open U \<and> x \<in> U \<and> (\<forall>y\<in>U. indicator A y \<in> ({-1<..<1} :: real set))"
using 1 open_greaterThanLessThan by blast
then guess U .. note U = this
hence "\<forall>y\<in>U. indicator A y < (1::real)"
unfolding greaterThanLessThan_def by auto
hence "U \<subseteq> -A" by auto
hence "x \<in> interior (-A)" using U interiorI by auto
thus ?thesis using fr interior_complement unfolding frontier_def by auto
qed
next
assume nfr: "x \<notin> frontier A"
hence "x \<in> interior A \<or> x \<in> interior (-A)"
by (auto simp: frontier_def closure_interior)
thus "isCont ((indicator A)::'a \<Rightarrow> real) x"
proof
assume int: "x \<in> interior A"
then obtain U where U: "open U" "x \<in> U" "U \<subseteq> A" unfolding interior_def by auto
hence "\<forall>y\<in>U. indicator A y = (1::real)" unfolding indicator_def by auto
hence "continuous_on U (indicator A)" by (simp add: indicator_eq_1_iff)
thus ?thesis using U continuous_on_eq_continuous_at by auto
next
assume ext: "x \<in> interior (-A)"
then obtain U where U: "open U" "x \<in> U" "U \<subseteq> -A" unfolding interior_def by auto
then have "continuous_on U (indicator A)"
using continuous_on_topological by (auto simp: subset_iff)
thus ?thesis using U continuous_on_eq_continuous_at by auto
qed
qed
lemma closedin_limpt:
"closedin (top_of_set T) S \<longleftrightarrow> S \<subseteq> T \<and> (\<forall>x. x islimpt S \<and> x \<in> T \<longrightarrow> x \<in> S)"
apply (simp add: closedin_closed, safe)
apply (simp add: closed_limpt islimpt_subset)
apply (rule_tac x="closure S" in exI, simp)
apply (force simp: closure_def)
done
lemma closedin_closed_eq: "closed S \<Longrightarrow> closedin (top_of_set S) T \<longleftrightarrow> closed T \<and> T \<subseteq> S"
by (meson closedin_limpt closed_subset closedin_closed_trans)
lemma connected_closed_set:
"closed S
\<Longrightarrow> connected S \<longleftrightarrow> (\<nexists>A B. closed A \<and> closed B \<and> A \<noteq> {} \<and> B \<noteq> {} \<and> A \<union> B = S \<and> A \<inter> B = {})"
unfolding connected_closedin_eq closedin_closed_eq connected_closedin_eq by blast
text \<open>If a connnected set is written as the union of two nonempty closed sets, then these sets
have to intersect.\<close>
lemma connected_as_closed_union:
assumes "connected C" "C = A \<union> B" "closed A" "closed B" "A \<noteq> {}" "B \<noteq> {}"
shows "A \<inter> B \<noteq> {}"
by (metis assms closed_Un connected_closed_set)
lemma closedin_subset_trans:
"closedin (top_of_set U) S \<Longrightarrow> S \<subseteq> T \<Longrightarrow> T \<subseteq> U \<Longrightarrow>
closedin (top_of_set T) S"
by (meson closedin_limpt subset_iff)
lemma openin_subset_trans:
"openin (top_of_set U) S \<Longrightarrow> S \<subseteq> T \<Longrightarrow> T \<subseteq> U \<Longrightarrow>
openin (top_of_set T) S"
by (auto simp: openin_open)
lemma closedin_compact:
"\<lbrakk>compact S; closedin (top_of_set S) T\<rbrakk> \<Longrightarrow> compact T"
by (metis closedin_closed compact_Int_closed)
lemma closedin_compact_eq:
fixes S :: "'a::t2_space set"
shows
"compact S
\<Longrightarrow> (closedin (top_of_set S) T \<longleftrightarrow>
compact T \<and> T \<subseteq> S)"
by (metis closedin_imp_subset closedin_compact closed_subset compact_imp_closed)
subsection \<open>Closure\<close>
lemma euclidean_closure_of [simp]: "euclidean closure_of S = closure S"
by (auto simp: closure_of_def closure_def islimpt_def)
lemma closure_openin_Int_closure:
assumes ope: "openin (top_of_set U) S" and "T \<subseteq> U"
shows "closure(S \<inter> closure T) = closure(S \<inter> T)"
proof
obtain V where "open V" and S: "S = U \<inter> V"
using ope using openin_open by metis
show "closure (S \<inter> closure T) \<subseteq> closure (S \<inter> T)"
proof (clarsimp simp: S)
fix x
assume "x \<in> closure (U \<inter> V \<inter> closure T)"
then have "V \<inter> closure T \<subseteq> A \<Longrightarrow> x \<in> closure A" for A
by (metis closure_mono subsetD inf.coboundedI2 inf_assoc)
then have "x \<in> closure (T \<inter> V)"
by (metis \<open>open V\<close> closure_closure inf_commute open_Int_closure_subset)
then show "x \<in> closure (U \<inter> V \<inter> T)"
by (metis \<open>T \<subseteq> U\<close> inf.absorb_iff2 inf_assoc inf_commute)
qed
next
show "closure (S \<inter> T) \<subseteq> closure (S \<inter> closure T)"
by (meson Int_mono closure_mono closure_subset order_refl)
qed
corollary infinite_openin:
fixes S :: "'a :: t1_space set"
shows "\<lbrakk>openin (top_of_set U) S; x \<in> S; x islimpt U\<rbrakk> \<Longrightarrow> infinite S"
by (clarsimp simp add: openin_open islimpt_eq_acc_point inf_commute)
lemma closure_Int_ballI:
assumes "\<And>U. \<lbrakk>openin (top_of_set S) U; U \<noteq> {}\<rbrakk> \<Longrightarrow> T \<inter> U \<noteq> {}"
shows "S \<subseteq> closure T"
proof (clarsimp simp: closure_iff_nhds_not_empty)
fix x and A and V
assume "x \<in> S" "V \<subseteq> A" "open V" "x \<in> V" "T \<inter> A = {}"
then have "openin (top_of_set S) (A \<inter> V \<inter> S)"
by (auto simp: openin_open intro!: exI[where x="V"])
moreover have "A \<inter> V \<inter> S \<noteq> {}" using \<open>x \<in> V\<close> \<open>V \<subseteq> A\<close> \<open>x \<in> S\<close>
by auto
ultimately have "T \<inter> (A \<inter> V \<inter> S) \<noteq> {}"
by (rule assms)
with \<open>T \<inter> A = {}\<close> show False by auto
qed
subsection \<open>Frontier\<close>
lemma euclidean_interior_of [simp]: "euclidean interior_of S = interior S"
by (auto simp: interior_of_def interior_def)
lemma euclidean_frontier_of [simp]: "euclidean frontier_of S = frontier S"
by (auto simp: frontier_of_def frontier_def)
lemma connected_Int_frontier:
"\<lbrakk>connected s; s \<inter> t \<noteq> {}; s - t \<noteq> {}\<rbrakk> \<Longrightarrow> (s \<inter> frontier t \<noteq> {})"
apply (simp add: frontier_interiors connected_openin, safe)
apply (drule_tac x="s \<inter> interior t" in spec, safe)
apply (drule_tac [2] x="s \<inter> interior (-t)" in spec)
apply (auto simp: disjoint_eq_subset_Compl dest: interior_subset [THEN subsetD])
done
subsection \<open>Compactness\<close>
lemma openin_delete:
fixes a :: "'a :: t1_space"
shows "openin (top_of_set u) s
\<Longrightarrow> openin (top_of_set u) (s - {a})"
by (metis Int_Diff open_delete openin_open)
lemma compact_eq_openin_cover:
"compact S \<longleftrightarrow>
(\<forall>C. (\<forall>c\<in>C. openin (top_of_set S) c) \<and> S \<subseteq> \<Union>C \<longrightarrow>
(\<exists>D\<subseteq>C. finite D \<and> S \<subseteq> \<Union>D))"
proof safe
fix C
assume "compact S" and "\<forall>c\<in>C. openin (top_of_set S) c" and "S \<subseteq> \<Union>C"
then have "\<forall>c\<in>{T. open T \<and> S \<inter> T \<in> C}. open c" and "S \<subseteq> \<Union>{T. open T \<and> S \<inter> T \<in> C}"
unfolding openin_open by force+
with \<open>compact S\<close> obtain D where "D \<subseteq> {T. open T \<and> S \<inter> T \<in> C}" and "finite D" and "S \<subseteq> \<Union>D"
by (meson compactE)
then have "image (\<lambda>T. S \<inter> T) D \<subseteq> C \<and> finite (image (\<lambda>T. S \<inter> T) D) \<and> S \<subseteq> \<Union>(image (\<lambda>T. S \<inter> T) D)"
by auto
then show "\<exists>D\<subseteq>C. finite D \<and> S \<subseteq> \<Union>D" ..
next
assume 1: "\<forall>C. (\<forall>c\<in>C. openin (top_of_set S) c) \<and> S \<subseteq> \<Union>C \<longrightarrow>
(\<exists>D\<subseteq>C. finite D \<and> S \<subseteq> \<Union>D)"
show "compact S"
proof (rule compactI)
fix C
let ?C = "image (\<lambda>T. S \<inter> T) C"
assume "\<forall>t\<in>C. open t" and "S \<subseteq> \<Union>C"
then have "(\<forall>c\<in>?C. openin (top_of_set S) c) \<and> S \<subseteq> \<Union>?C"
unfolding openin_open by auto
with 1 obtain D where "D \<subseteq> ?C" and "finite D" and "S \<subseteq> \<Union>D"
by metis
let ?D = "inv_into C (\<lambda>T. S \<inter> T) ` D"
have "?D \<subseteq> C \<and> finite ?D \<and> S \<subseteq> \<Union>?D"
proof (intro conjI)
from \<open>D \<subseteq> ?C\<close> show "?D \<subseteq> C"
by (fast intro: inv_into_into)
from \<open>finite D\<close> show "finite ?D"
by (rule finite_imageI)
from \<open>S \<subseteq> \<Union>D\<close> show "S \<subseteq> \<Union>?D"
apply (rule subset_trans, clarsimp)
apply (frule subsetD [OF \<open>D \<subseteq> ?C\<close>, THEN f_inv_into_f])
apply (erule rev_bexI, fast)
done
qed
then show "\<exists>D\<subseteq>C. finite D \<and> S \<subseteq> \<Union>D" ..
qed
qed
subsection \<open>Continuity\<close>
lemma interior_image_subset:
assumes "inj f" "\<And>x. continuous (at x) f"
shows "interior (f ` S) \<subseteq> f ` (interior S)"
proof
fix x assume "x \<in> interior (f ` S)"
then obtain T where as: "open T" "x \<in> T" "T \<subseteq> f ` S" ..
then have "x \<in> f ` S" by auto
then obtain y where y: "y \<in> S" "x = f y" by auto
have "open (f -` T)"
using assms \<open>open T\<close> by (simp add: continuous_at_imp_continuous_on open_vimage)
moreover have "y \<in> vimage f T"
using \<open>x = f y\<close> \<open>x \<in> T\<close> by simp
moreover have "vimage f T \<subseteq> S"
using \<open>T \<subseteq> image f S\<close> \<open>inj f\<close> unfolding inj_on_def subset_eq by auto
ultimately have "y \<in> interior S" ..
with \<open>x = f y\<close> show "x \<in> f ` interior S" ..
qed
subsection\<^marker>\<open>tag unimportant\<close> \<open>Equality of continuous functions on closure and related results\<close>
lemma continuous_closedin_preimage_constant:
fixes f :: "_ \<Rightarrow> 'b::t1_space"
shows "continuous_on S f \<Longrightarrow> closedin (top_of_set S) {x \<in> S. f x = a}"
using continuous_closedin_preimage[of S f "{a}"] by (simp add: vimage_def Collect_conj_eq)
lemma continuous_closed_preimage_constant:
fixes f :: "_ \<Rightarrow> 'b::t1_space"
shows "continuous_on S f \<Longrightarrow> closed S \<Longrightarrow> closed {x \<in> S. f x = a}"
using continuous_closed_preimage[of S f "{a}"] by (simp add: vimage_def Collect_conj_eq)
lemma continuous_constant_on_closure:
fixes f :: "_ \<Rightarrow> 'b::t1_space"
assumes "continuous_on (closure S) f"
and "\<And>x. x \<in> S \<Longrightarrow> f x = a"
and "x \<in> closure S"
shows "f x = a"
using continuous_closed_preimage_constant[of "closure S" f a]
assms closure_minimal[of S "{x \<in> closure S. f x = a}"] closure_subset
unfolding subset_eq
by auto
lemma image_closure_subset:
assumes contf: "continuous_on (closure S) f"
and "closed T"
and "(f ` S) \<subseteq> T"
shows "f ` (closure S) \<subseteq> T"
proof -
have "S \<subseteq> {x \<in> closure S. f x \<in> T}"
using assms(3) closure_subset by auto
moreover have "closed (closure S \<inter> f -` T)"
using continuous_closed_preimage[OF contf] \<open>closed T\<close> by auto
ultimately have "closure S = (closure S \<inter> f -` T)"
using closure_minimal[of S "(closure S \<inter> f -` T)"] by auto
then show ?thesis by auto
qed
subsection\<^marker>\<open>tag unimportant\<close> \<open>A function constant on a set\<close>
definition constant_on (infixl "(constant'_on)" 50)
where "f constant_on A \<equiv> \<exists>y. \<forall>x\<in>A. f x = y"
lemma constant_on_subset: "\<lbrakk>f constant_on A; B \<subseteq> A\<rbrakk> \<Longrightarrow> f constant_on B"
unfolding constant_on_def by blast
lemma injective_not_constant:
fixes S :: "'a::{perfect_space} set"
shows "\<lbrakk>open S; inj_on f S; f constant_on S\<rbrakk> \<Longrightarrow> S = {}"
unfolding constant_on_def
by (metis equals0I inj_on_contraD islimpt_UNIV islimpt_def)
lemma constant_on_closureI:
fixes f :: "_ \<Rightarrow> 'b::t1_space"
assumes cof: "f constant_on S" and contf: "continuous_on (closure S) f"
shows "f constant_on (closure S)"
using continuous_constant_on_closure [OF contf] cof unfolding constant_on_def
by metis
subsection\<^marker>\<open>tag unimportant\<close> \<open>Continuity relative to a union.\<close>
lemma continuous_on_Un_local:
"\<lbrakk>closedin (top_of_set (s \<union> t)) s; closedin (top_of_set (s \<union> t)) t;
continuous_on s f; continuous_on t f\<rbrakk>
\<Longrightarrow> continuous_on (s \<union> t) f"
unfolding continuous_on closedin_limpt
by (metis Lim_trivial_limit Lim_within_union Un_iff trivial_limit_within)
lemma continuous_on_cases_local:
"\<lbrakk>closedin (top_of_set (s \<union> t)) s; closedin (top_of_set (s \<union> t)) t;
continuous_on s f; continuous_on t g;
\<And>x. \<lbrakk>x \<in> s \<and> \<not>P x \<or> x \<in> t \<and> P x\<rbrakk> \<Longrightarrow> f x = g x\<rbrakk>
\<Longrightarrow> continuous_on (s \<union> t) (\<lambda>x. if P x then f x else g x)"
by (rule continuous_on_Un_local) (auto intro: continuous_on_eq)
lemma continuous_on_cases_le:
fixes h :: "'a :: topological_space \<Rightarrow> real"
assumes "continuous_on {t \<in> s. h t \<le> a} f"
and "continuous_on {t \<in> s. a \<le> h t} g"
and h: "continuous_on s h"
and "\<And>t. \<lbrakk>t \<in> s; h t = a\<rbrakk> \<Longrightarrow> f t = g t"
shows "continuous_on s (\<lambda>t. if h t \<le> a then f(t) else g(t))"
proof -
have s: "s = (s \<inter> h -` atMost a) \<union> (s \<inter> h -` atLeast a)"
by force
have 1: "closedin (top_of_set s) (s \<inter> h -` atMost a)"
by (rule continuous_closedin_preimage [OF h closed_atMost])
have 2: "closedin (top_of_set s) (s \<inter> h -` atLeast a)"
by (rule continuous_closedin_preimage [OF h closed_atLeast])
have eq: "s \<inter> h -` {..a} = {t \<in> s. h t \<le> a}" "s \<inter> h -` {a..} = {t \<in> s. a \<le> h t}"
by auto
show ?thesis
apply (rule continuous_on_subset [of s, OF _ order_refl])
apply (subst s)
apply (rule continuous_on_cases_local)
using 1 2 s assms apply (auto simp: eq)
done
qed
lemma continuous_on_cases_1:
fixes s :: "real set"
assumes "continuous_on {t \<in> s. t \<le> a} f"
and "continuous_on {t \<in> s. a \<le> t} g"
and "a \<in> s \<Longrightarrow> f a = g a"
shows "continuous_on s (\<lambda>t. if t \<le> a then f(t) else g(t))"
using assms
by (auto intro: continuous_on_cases_le [where h = id, simplified])
subsection\<^marker>\<open>tag unimportant\<close>\<open>Inverse function property for open/closed maps\<close>
lemma continuous_on_inverse_open_map:
assumes contf: "continuous_on S f"
and imf: "f ` S = T"
and injf: "\<And>x. x \<in> S \<Longrightarrow> g (f x) = x"
and oo: "\<And>U. openin (top_of_set S) U \<Longrightarrow> openin (top_of_set T) (f ` U)"
shows "continuous_on T g"
proof -
from imf injf have gTS: "g ` T = S"
by force
from imf injf have fU: "U \<subseteq> S \<Longrightarrow> (f ` U) = T \<inter> g -` U" for U
by force
show ?thesis
by (simp add: continuous_on_open [of T g] gTS) (metis openin_imp_subset fU oo)
qed
lemma continuous_on_inverse_closed_map:
assumes contf: "continuous_on S f"
and imf: "f ` S = T"
and injf: "\<And>x. x \<in> S \<Longrightarrow> g(f x) = x"
and oo: "\<And>U. closedin (top_of_set S) U \<Longrightarrow> closedin (top_of_set T) (f ` U)"
shows "continuous_on T g"
proof -
from imf injf have gTS: "g ` T = S"
by force
from imf injf have fU: "U \<subseteq> S \<Longrightarrow> (f ` U) = T \<inter> g -` U" for U
by force
show ?thesis
by (simp add: continuous_on_closed [of T g] gTS) (metis closedin_imp_subset fU oo)
qed
lemma homeomorphism_injective_open_map:
assumes contf: "continuous_on S f"
and imf: "f ` S = T"
and injf: "inj_on f S"
and oo: "\<And>U. openin (top_of_set S) U \<Longrightarrow> openin (top_of_set T) (f ` U)"
obtains g where "homeomorphism S T f g"
proof
have "continuous_on T (inv_into S f)"
by (metis contf continuous_on_inverse_open_map imf injf inv_into_f_f oo)
with imf injf contf show "homeomorphism S T f (inv_into S f)"
by (auto simp: homeomorphism_def)
qed
lemma homeomorphism_injective_closed_map:
assumes contf: "continuous_on S f"
and imf: "f ` S = T"
and injf: "inj_on f S"
and oo: "\<And>U. closedin (top_of_set S) U \<Longrightarrow> closedin (top_of_set T) (f ` U)"
obtains g where "homeomorphism S T f g"
proof
have "continuous_on T (inv_into S f)"
by (metis contf continuous_on_inverse_closed_map imf injf inv_into_f_f oo)
with imf injf contf show "homeomorphism S T f (inv_into S f)"
by (auto simp: homeomorphism_def)
qed
lemma homeomorphism_imp_open_map:
assumes hom: "homeomorphism S T f g"
and oo: "openin (top_of_set S) U"
shows "openin (top_of_set T) (f ` U)"
proof -
from hom oo have [simp]: "f ` U = T \<inter> g -` U"
using openin_subset by (fastforce simp: homeomorphism_def rev_image_eqI)
from hom have "continuous_on T g"
unfolding homeomorphism_def by blast
moreover have "g ` T = S"
by (metis hom homeomorphism_def)
ultimately show ?thesis
by (simp add: continuous_on_open oo)
qed
lemma homeomorphism_imp_closed_map:
assumes hom: "homeomorphism S T f g"
and oo: "closedin (top_of_set S) U"
shows "closedin (top_of_set T) (f ` U)"
proof -
from hom oo have [simp]: "f ` U = T \<inter> g -` U"
using closedin_subset by (fastforce simp: homeomorphism_def rev_image_eqI)
from hom have "continuous_on T g"
unfolding homeomorphism_def by blast
moreover have "g ` T = S"
by (metis hom homeomorphism_def)
ultimately show ?thesis
by (simp add: continuous_on_closed oo)
qed
subsection\<^marker>\<open>tag unimportant\<close> \<open>Seperability\<close>
lemma subset_second_countable:
obtains \<B> :: "'a:: second_countable_topology set set"
where "countable \<B>"
"{} \<notin> \<B>"
"\<And>C. C \<in> \<B> \<Longrightarrow> openin(top_of_set S) C"
"\<And>T. openin(top_of_set S) T \<Longrightarrow> \<exists>\<U>. \<U> \<subseteq> \<B> \<and> T = \<Union>\<U>"
proof -
obtain \<B> :: "'a set set"
where "countable \<B>"
and opeB: "\<And>C. C \<in> \<B> \<Longrightarrow> openin(top_of_set S) C"
and \<B>: "\<And>T. openin(top_of_set S) T \<Longrightarrow> \<exists>\<U>. \<U> \<subseteq> \<B> \<and> T = \<Union>\<U>"
proof -
obtain \<C> :: "'a set set"
where "countable \<C>" and ope: "\<And>C. C \<in> \<C> \<Longrightarrow> open C"
and \<C>: "\<And>S. open S \<Longrightarrow> \<exists>U. U \<subseteq> \<C> \<and> S = \<Union>U"
by (metis univ_second_countable that)
show ?thesis
proof
show "countable ((\<lambda>C. S \<inter> C) ` \<C>)"
by (simp add: \<open>countable \<C>\<close>)
show "\<And>C. C \<in> (\<inter>) S ` \<C> \<Longrightarrow> openin (top_of_set S) C"
using ope by auto
show "\<And>T. openin (top_of_set S) T \<Longrightarrow> \<exists>\<U>\<subseteq>(\<inter>) S ` \<C>. T = \<Union>\<U>"
by (metis \<C> image_mono inf_Sup openin_open)
qed
qed
show ?thesis
proof
show "countable (\<B> - {{}})"
using \<open>countable \<B>\<close> by blast
show "\<And>C. \<lbrakk>C \<in> \<B> - {{}}\<rbrakk> \<Longrightarrow> openin (top_of_set S) C"
by (simp add: \<open>\<And>C. C \<in> \<B> \<Longrightarrow> openin (top_of_set S) C\<close>)
show "\<exists>\<U>\<subseteq>\<B> - {{}}. T = \<Union>\<U>" if "openin (top_of_set S) T" for T
using \<B> [OF that]
apply clarify
apply (rule_tac x="\<U> - {{}}" in exI, auto)
done
qed auto
qed
lemma Lindelof_openin:
fixes \<F> :: "'a::second_countable_topology set set"
assumes "\<And>S. S \<in> \<F> \<Longrightarrow> openin (top_of_set U) S"
obtains \<F>' where "\<F>' \<subseteq> \<F>" "countable \<F>'" "\<Union>\<F>' = \<Union>\<F>"
proof -
have "\<And>S. S \<in> \<F> \<Longrightarrow> \<exists>T. open T \<and> S = U \<inter> T"
using assms by (simp add: openin_open)
then obtain tf where tf: "\<And>S. S \<in> \<F> \<Longrightarrow> open (tf S) \<and> (S = U \<inter> tf S)"
by metis
have [simp]: "\<And>\<F>'. \<F>' \<subseteq> \<F> \<Longrightarrow> \<Union>\<F>' = U \<inter> \<Union>(tf ` \<F>')"
using tf by fastforce
obtain \<G> where "countable \<G> \<and> \<G> \<subseteq> tf ` \<F>" "\<Union>\<G> = \<Union>(tf ` \<F>)"
using tf by (force intro: Lindelof [of "tf ` \<F>"])
then obtain \<F>' where \<F>': "\<F>' \<subseteq> \<F>" "countable \<F>'" "\<Union>\<F>' = \<Union>\<F>"
by (clarsimp simp add: countable_subset_image)
then show ?thesis ..
qed
subsection\<^marker>\<open>tag unimportant\<close>\<open>Closed Maps\<close>
lemma continuous_imp_closed_map:
fixes f :: "'a::t2_space \<Rightarrow> 'b::t2_space"
assumes "closedin (top_of_set S) U"
"continuous_on S f" "f ` S = T" "compact S"
shows "closedin (top_of_set T) (f ` U)"
by (metis assms closedin_compact_eq compact_continuous_image continuous_on_subset subset_image_iff)
lemma closed_map_restrict:
assumes cloU: "closedin (top_of_set (S \<inter> f -` T')) U"
and cc: "\<And>U. closedin (top_of_set S) U \<Longrightarrow> closedin (top_of_set T) (f ` U)"
and "T' \<subseteq> T"
shows "closedin (top_of_set T') (f ` U)"
proof -
obtain V where "closed V" "U = S \<inter> f -` T' \<inter> V"
using cloU by (auto simp: closedin_closed)
with cc [of "S \<inter> V"] \<open>T' \<subseteq> T\<close> show ?thesis
by (fastforce simp add: closedin_closed)
qed
subsection\<^marker>\<open>tag unimportant\<close>\<open>Open Maps\<close>
lemma open_map_restrict:
assumes opeU: "openin (top_of_set (S \<inter> f -` T')) U"
and oo: "\<And>U. openin (top_of_set S) U \<Longrightarrow> openin (top_of_set T) (f ` U)"
and "T' \<subseteq> T"
shows "openin (top_of_set T') (f ` U)"
proof -
obtain V where "open V" "U = S \<inter> f -` T' \<inter> V"
using opeU by (auto simp: openin_open)
with oo [of "S \<inter> V"] \<open>T' \<subseteq> T\<close> show ?thesis
by (fastforce simp add: openin_open)
qed
subsection\<^marker>\<open>tag unimportant\<close>\<open>Quotient maps\<close>
lemma quotient_map_imp_continuous_open:
assumes T: "f ` S \<subseteq> T"
and ope: "\<And>U. U \<subseteq> T
\<Longrightarrow> (openin (top_of_set S) (S \<inter> f -` U) \<longleftrightarrow>
openin (top_of_set T) U)"
shows "continuous_on S f"
proof -
have [simp]: "S \<inter> f -` f ` S = S" by auto
show ?thesis
using ope [OF T]
apply (simp add: continuous_on_open)
by (meson ope openin_imp_subset openin_trans)
qed
lemma quotient_map_imp_continuous_closed:
assumes T: "f ` S \<subseteq> T"
and ope: "\<And>U. U \<subseteq> T
\<Longrightarrow> (closedin (top_of_set S) (S \<inter> f -` U) \<longleftrightarrow>
closedin (top_of_set T) U)"
shows "continuous_on S f"
proof -
have [simp]: "S \<inter> f -` f ` S = S" by auto
show ?thesis
using ope [OF T]
apply (simp add: continuous_on_closed)
by (metis (no_types, lifting) ope closedin_imp_subset closedin_trans)
qed
lemma open_map_imp_quotient_map:
assumes contf: "continuous_on S f"
and T: "T \<subseteq> f ` S"
and ope: "\<And>T. openin (top_of_set S) T
\<Longrightarrow> openin (top_of_set (f ` S)) (f ` T)"
shows "openin (top_of_set S) (S \<inter> f -` T) =
openin (top_of_set (f ` S)) T"
proof -
have "T = f ` (S \<inter> f -` T)"
using T by blast
then show ?thesis
using "ope" contf continuous_on_open by metis
qed
lemma closed_map_imp_quotient_map:
assumes contf: "continuous_on S f"
and T: "T \<subseteq> f ` S"
and ope: "\<And>T. closedin (top_of_set S) T
\<Longrightarrow> closedin (top_of_set (f ` S)) (f ` T)"
shows "openin (top_of_set S) (S \<inter> f -` T) \<longleftrightarrow>
openin (top_of_set (f ` S)) T"
(is "?lhs = ?rhs")
proof
assume ?lhs
then have *: "closedin (top_of_set S) (S - (S \<inter> f -` T))"
using closedin_diff by fastforce
have [simp]: "(f ` S - f ` (S - (S \<inter> f -` T))) = T"
using T by blast
show ?rhs
using ope [OF *, unfolded closedin_def] by auto
next
assume ?rhs
with contf show ?lhs
by (auto simp: continuous_on_open)
qed
lemma continuous_right_inverse_imp_quotient_map:
assumes contf: "continuous_on S f" and imf: "f ` S \<subseteq> T"
and contg: "continuous_on T g" and img: "g ` T \<subseteq> S"
and fg [simp]: "\<And>y. y \<in> T \<Longrightarrow> f(g y) = y"
and U: "U \<subseteq> T"
shows "openin (top_of_set S) (S \<inter> f -` U) \<longleftrightarrow>
openin (top_of_set T) U"
(is "?lhs = ?rhs")
proof -
have f: "\<And>Z. openin (top_of_set (f ` S)) Z \<Longrightarrow>
openin (top_of_set S) (S \<inter> f -` Z)"
and g: "\<And>Z. openin (top_of_set (g ` T)) Z \<Longrightarrow>
openin (top_of_set T) (T \<inter> g -` Z)"
using contf contg by (auto simp: continuous_on_open)
show ?thesis
proof
have "T \<inter> g -` (g ` T \<inter> (S \<inter> f -` U)) = {x \<in> T. f (g x) \<in> U}"
using imf img by blast
also have "... = U"
using U by auto
finally have eq: "T \<inter> g -` (g ` T \<inter> (S \<inter> f -` U)) = U" .
assume ?lhs
then have *: "openin (top_of_set (g ` T)) (g ` T \<inter> (S \<inter> f -` U))"
by (meson img openin_Int openin_subtopology_Int_subset openin_subtopology_self)
show ?rhs
using g [OF *] eq by auto
next
assume rhs: ?rhs
show ?lhs
by (metis f fg image_eqI image_subset_iff imf img openin_subopen openin_subtopology_self openin_trans rhs)
qed
qed
lemma continuous_left_inverse_imp_quotient_map:
assumes "continuous_on S f"
and "continuous_on (f ` S) g"
and "\<And>x. x \<in> S \<Longrightarrow> g(f x) = x"
and "U \<subseteq> f ` S"
shows "openin (top_of_set S) (S \<inter> f -` U) \<longleftrightarrow>
openin (top_of_set (f ` S)) U"
apply (rule continuous_right_inverse_imp_quotient_map)
using assms apply force+
done
lemma continuous_imp_quotient_map:
fixes f :: "'a::t2_space \<Rightarrow> 'b::t2_space"
assumes "continuous_on S f" "f ` S = T" "compact S" "U \<subseteq> T"
shows "openin (top_of_set S) (S \<inter> f -` U) \<longleftrightarrow>
openin (top_of_set T) U"
by (metis (no_types, lifting) assms closed_map_imp_quotient_map continuous_imp_closed_map)
subsection\<^marker>\<open>tag unimportant\<close>\<open>Pasting lemmas for functions, for of casewise definitions\<close>
subsubsection\<open>on open sets\<close>
lemma pasting_lemma:
assumes ope: "\<And>i. i \<in> I \<Longrightarrow> openin X (T i)"
and cont: "\<And>i. i \<in> I \<Longrightarrow> continuous_map(subtopology X (T i)) Y (f i)"
and f: "\<And>i j x. \<lbrakk>i \<in> I; j \<in> I; x \<in> topspace X \<inter> T i \<inter> T j\<rbrakk> \<Longrightarrow> f i x = f j x"
and g: "\<And>x. x \<in> topspace X \<Longrightarrow> \<exists>j. j \<in> I \<and> x \<in> T j \<and> g x = f j x"
shows "continuous_map X Y g"
unfolding continuous_map_openin_preimage_eq
proof (intro conjI allI impI)
show "g ` topspace X \<subseteq> topspace Y"
using g cont continuous_map_image_subset_topspace by fastforce
next
fix U
assume Y: "openin Y U"
have T: "T i \<subseteq> topspace X" if "i \<in> I" for i
using ope by (simp add: openin_subset that)
have *: "topspace X \<inter> g -` U = (\<Union>i \<in> I. T i \<inter> f i -` U)"
using f g T by fastforce
have "\<And>i. i \<in> I \<Longrightarrow> openin X (T i \<inter> f i -` U)"
using cont unfolding continuous_map_openin_preimage_eq
by (metis Y T inf.commute inf_absorb1 ope topspace_subtopology openin_trans_full)
then show "openin X (topspace X \<inter> g -` U)"
by (auto simp: *)
qed
lemma pasting_lemma_exists:
assumes X: "topspace X \<subseteq> (\<Union>i \<in> I. T i)"
and ope: "\<And>i. i \<in> I \<Longrightarrow> openin X (T i)"
and cont: "\<And>i. i \<in> I \<Longrightarrow> continuous_map (subtopology X (T i)) Y (f i)"
and f: "\<And>i j x. \<lbrakk>i \<in> I; j \<in> I; x \<in> topspace X \<inter> T i \<inter> T j\<rbrakk> \<Longrightarrow> f i x = f j x"
obtains g where "continuous_map X Y g" "\<And>x i. \<lbrakk>i \<in> I; x \<in> topspace X \<inter> T i\<rbrakk> \<Longrightarrow> g x = f i x"
proof
let ?h = "\<lambda>x. f (SOME i. i \<in> I \<and> x \<in> T i) x"
show "continuous_map X Y ?h"
apply (rule pasting_lemma [OF ope cont])
apply (blast intro: f)+
by (metis (no_types, lifting) UN_E X subsetD someI_ex)
show "f (SOME i. i \<in> I \<and> x \<in> T i) x = f i x" if "i \<in> I" "x \<in> topspace X \<inter> T i" for i x
by (metis (no_types, lifting) IntD2 IntI f someI_ex that)
qed
lemma pasting_lemma_locally_finite:
assumes fin: "\<And>x. x \<in> topspace X \<Longrightarrow> \<exists>V. openin X V \<and> x \<in> V \<and> finite {i \<in> I. T i \<inter> V \<noteq> {}}"
and clo: "\<And>i. i \<in> I \<Longrightarrow> closedin X (T i)"
and cont: "\<And>i. i \<in> I \<Longrightarrow> continuous_map(subtopology X (T i)) Y (f i)"
and f: "\<And>i j x. \<lbrakk>i \<in> I; j \<in> I; x \<in> topspace X \<inter> T i \<inter> T j\<rbrakk> \<Longrightarrow> f i x = f j x"
and g: "\<And>x. x \<in> topspace X \<Longrightarrow> \<exists>j. j \<in> I \<and> x \<in> T j \<and> g x = f j x"
shows "continuous_map X Y g"
unfolding continuous_map_closedin_preimage_eq
proof (intro conjI allI impI)
show "g ` topspace X \<subseteq> topspace Y"
using g cont continuous_map_image_subset_topspace by fastforce
next
fix U
assume Y: "closedin Y U"
have T: "T i \<subseteq> topspace X" if "i \<in> I" for i
using clo by (simp add: closedin_subset that)
have *: "topspace X \<inter> g -` U = (\<Union>i \<in> I. T i \<inter> f i -` U)"
using f g T by fastforce
have cTf: "\<And>i. i \<in> I \<Longrightarrow> closedin X (T i \<inter> f i -` U)"
using cont unfolding continuous_map_closedin_preimage_eq topspace_subtopology
by (simp add: Int_absorb1 T Y clo closedin_closed_subtopology)
have sub: "{Z \<in> (\<lambda>i. T i \<inter> f i -` U) ` I. Z \<inter> V \<noteq> {}}
\<subseteq> (\<lambda>i. T i \<inter> f i -` U) ` {i \<in> I. T i \<inter> V \<noteq> {}}" for V
by auto
have 1: "(\<Union>i\<in>I. T i \<inter> f i -` U) \<subseteq> topspace X"
using T by blast
then have lf: "locally_finite_in X ((\<lambda>i. T i \<inter> f i -` U) ` I)"
unfolding locally_finite_in_def
using finite_subset [OF sub] fin by force
show "closedin X (topspace X \<inter> g -` U)"
apply (subst *)
apply (rule closedin_locally_finite_Union)
apply (auto intro: cTf lf)
done
qed
subsubsection\<open>Likewise on closed sets, with a finiteness assumption\<close>
lemma pasting_lemma_closed:
assumes fin: "finite I"
and clo: "\<And>i. i \<in> I \<Longrightarrow> closedin X (T i)"
and cont: "\<And>i. i \<in> I \<Longrightarrow> continuous_map(subtopology X (T i)) Y (f i)"
and f: "\<And>i j x. \<lbrakk>i \<in> I; j \<in> I; x \<in> topspace X \<inter> T i \<inter> T j\<rbrakk> \<Longrightarrow> f i x = f j x"
and g: "\<And>x. x \<in> topspace X \<Longrightarrow> \<exists>j. j \<in> I \<and> x \<in> T j \<and> g x = f j x"
shows "continuous_map X Y g"
using pasting_lemma_locally_finite [OF _ clo cont f g] fin by auto
lemma pasting_lemma_exists_locally_finite:
assumes fin: "\<And>x. x \<in> topspace X \<Longrightarrow> \<exists>V. openin X V \<and> x \<in> V \<and> finite {i \<in> I. T i \<inter> V \<noteq> {}}"
and X: "topspace X \<subseteq> \<Union>(T ` I)"
and clo: "\<And>i. i \<in> I \<Longrightarrow> closedin X (T i)"
and cont: "\<And>i. i \<in> I \<Longrightarrow> continuous_map(subtopology X (T i)) Y (f i)"
and f: "\<And>i j x. \<lbrakk>i \<in> I; j \<in> I; x \<in> topspace X \<inter> T i \<inter> T j\<rbrakk> \<Longrightarrow> f i x = f j x"
and g: "\<And>x. x \<in> topspace X \<Longrightarrow> \<exists>j. j \<in> I \<and> x \<in> T j \<and> g x = f j x"
obtains g where "continuous_map X Y g" "\<And>x i. \<lbrakk>i \<in> I; x \<in> topspace X \<inter> T i\<rbrakk> \<Longrightarrow> g x = f i x"
proof
show "continuous_map X Y (\<lambda>x. f(@i. i \<in> I \<and> x \<in> T i) x)"
apply (rule pasting_lemma_locally_finite [OF fin])
apply (blast intro: assms)+
by (metis (no_types, lifting) UN_E X set_rev_mp someI_ex)
next
fix x i
assume "i \<in> I" and "x \<in> topspace X \<inter> T i"
show "f (SOME i. i \<in> I \<and> x \<in> T i) x = f i x"
apply (rule someI2_ex)
using \<open>i \<in> I\<close> \<open>x \<in> topspace X \<inter> T i\<close> apply blast
by (meson Int_iff \<open>i \<in> I\<close> \<open>x \<in> topspace X \<inter> T i\<close> f)
qed
lemma pasting_lemma_exists_closed:
assumes fin: "finite I"
and X: "topspace X \<subseteq> \<Union>(T ` I)"
and clo: "\<And>i. i \<in> I \<Longrightarrow> closedin X (T i)"
and cont: "\<And>i. i \<in> I \<Longrightarrow> continuous_map(subtopology X (T i)) Y (f i)"
and f: "\<And>i j x. \<lbrakk>i \<in> I; j \<in> I; x \<in> topspace X \<inter> T i \<inter> T j\<rbrakk> \<Longrightarrow> f i x = f j x"
obtains g where "continuous_map X Y g" "\<And>x i. \<lbrakk>i \<in> I; x \<in> topspace X \<inter> T i\<rbrakk> \<Longrightarrow> g x = f i x"
proof
show "continuous_map X Y (\<lambda>x. f (SOME i. i \<in> I \<and> x \<in> T i) x)"
apply (rule pasting_lemma_closed [OF \<open>finite I\<close> clo cont])
apply (blast intro: f)+
by (metis (mono_tags, lifting) UN_iff X someI_ex subset_iff)
next
fix x i
assume "i \<in> I" "x \<in> topspace X \<inter> T i"
then show "f (SOME i. i \<in> I \<and> x \<in> T i) x = f i x"
by (metis (no_types, lifting) IntD2 IntI f someI_ex)
qed
lemma continuous_map_cases:
assumes f: "continuous_map (subtopology X (X closure_of {x. P x})) Y f"
and g: "continuous_map (subtopology X (X closure_of {x. \<not> P x})) Y g"
and fg: "\<And>x. x \<in> X frontier_of {x. P x} \<Longrightarrow> f x = g x"
shows "continuous_map X Y (\<lambda>x. if P x then f x else g x)"
proof (rule pasting_lemma_closed)
let ?f = "\<lambda>b. if b then f else g"
let ?g = "\<lambda>x. if P x then f x else g x"
let ?T = "\<lambda>b. if b then X closure_of {x. P x} else X closure_of {x. ~P x}"
show "finite {True,False}" by auto
have eq: "topspace X - Collect P = topspace X \<inter> {x. \<not> P x}"
by blast
show "?f i x = ?f j x"
if "i \<in> {True,False}" "j \<in> {True,False}" and x: "x \<in> topspace X \<inter> ?T i \<inter> ?T j" for i j x
proof -
have "f x = g x"
if "i" "\<not> j"
apply (rule fg)
unfolding frontier_of_closures eq
using x that closure_of_restrict by fastforce
moreover
have "g x = f x"
if "x \<in> X closure_of {x. \<not> P x}" "x \<in> X closure_of Collect P" "\<not> i" "j" for x
apply (rule fg [symmetric])
unfolding frontier_of_closures eq
using x that closure_of_restrict by fastforce
ultimately show ?thesis
using that by (auto simp flip: closure_of_restrict)
qed
show "\<exists>j. j \<in> {True,False} \<and> x \<in> ?T j \<and> (if P x then f x else g x) = ?f j x"
if "x \<in> topspace X" for x
apply simp
apply safe
apply (metis Int_iff closure_of inf_sup_absorb mem_Collect_eq that)
by (metis DiffI eq closure_of_subset_Int contra_subsetD mem_Collect_eq that)
qed (auto simp: f g)
lemma continuous_map_cases_alt:
assumes f: "continuous_map (subtopology X (X closure_of {x \<in> topspace X. P x})) Y f"
and g: "continuous_map (subtopology X (X closure_of {x \<in> topspace X. ~P x})) Y g"
and fg: "\<And>x. x \<in> X frontier_of {x \<in> topspace X. P x} \<Longrightarrow> f x = g x"
shows "continuous_map X Y (\<lambda>x. if P x then f x else g x)"
apply (rule continuous_map_cases)
using assms
apply (simp_all add: Collect_conj_eq closure_of_restrict [symmetric] frontier_of_restrict [symmetric])
done
lemma continuous_map_cases_function:
assumes contp: "continuous_map X Z p"
and contf: "continuous_map (subtopology X {x \<in> topspace X. p x \<in> Z closure_of U}) Y f"
and contg: "continuous_map (subtopology X {x \<in> topspace X. p x \<in> Z closure_of (topspace Z - U)}) Y g"
and fg: "\<And>x. \<lbrakk>x \<in> topspace X; p x \<in> Z frontier_of U\<rbrakk> \<Longrightarrow> f x = g x"
shows "continuous_map X Y (\<lambda>x. if p x \<in> U then f x else g x)"
proof (rule continuous_map_cases_alt)
show "continuous_map (subtopology X (X closure_of {x \<in> topspace X. p x \<in> U})) Y f"
proof (rule continuous_map_from_subtopology_mono)
let ?T = "{x \<in> topspace X. p x \<in> Z closure_of U}"
show "continuous_map (subtopology X ?T) Y f"
by (simp add: contf)
show "X closure_of {x \<in> topspace X. p x \<in> U} \<subseteq> ?T"
by (rule continuous_map_closure_preimage_subset [OF contp])
qed
show "continuous_map (subtopology X (X closure_of {x \<in> topspace X. p x \<notin> U})) Y g"
proof (rule continuous_map_from_subtopology_mono)
let ?T = "{x \<in> topspace X. p x \<in> Z closure_of (topspace Z - U)}"
show "continuous_map (subtopology X ?T) Y g"
by (simp add: contg)
have "X closure_of {x \<in> topspace X. p x \<notin> U} \<subseteq> X closure_of {x \<in> topspace X. p x \<in> topspace Z - U}"
apply (rule closure_of_mono)
using continuous_map_closedin contp by fastforce
then show "X closure_of {x \<in> topspace X. p x \<notin> U} \<subseteq> ?T"
by (rule order_trans [OF _ continuous_map_closure_preimage_subset [OF contp]])
qed
next
show "f x = g x" if "x \<in> X frontier_of {x \<in> topspace X. p x \<in> U}" for x
using that continuous_map_frontier_frontier_preimage_subset [OF contp, of U] fg by blast
qed
subsection \<open>Retractions\<close>
definition\<^marker>\<open>tag important\<close> retraction :: "('a::topological_space) set \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> bool"
where "retraction S T r \<longleftrightarrow>
T \<subseteq> S \<and> continuous_on S r \<and> r ` S \<subseteq> T \<and> (\<forall>x\<in>T. r x = x)"
definition\<^marker>\<open>tag important\<close> retract_of (infixl "retract'_of" 50) where
"T retract_of S \<longleftrightarrow> (\<exists>r. retraction S T r)"
lemma retraction_idempotent: "retraction S T r \<Longrightarrow> x \<in> S \<Longrightarrow> r (r x) = r x"
unfolding retraction_def by auto
text \<open>Preservation of fixpoints under (more general notion of) retraction\<close>
lemma invertible_fixpoint_property:
fixes S :: "'a::topological_space set"
and T :: "'b::topological_space set"
assumes contt: "continuous_on T i"
and "i ` T \<subseteq> S"
and contr: "continuous_on S r"
and "r ` S \<subseteq> T"
and ri: "\<And>y. y \<in> T \<Longrightarrow> r (i y) = y"
and FP: "\<And>f. \<lbrakk>continuous_on S f; f ` S \<subseteq> S\<rbrakk> \<Longrightarrow> \<exists>x\<in>S. f x = x"
and contg: "continuous_on T g"
and "g ` T \<subseteq> T"
obtains y where "y \<in> T" and "g y = y"
proof -
have "\<exists>x\<in>S. (i \<circ> g \<circ> r) x = x"
proof (rule FP)
show "continuous_on S (i \<circ> g \<circ> r)"
by (meson contt contr assms(4) contg assms(8) continuous_on_compose continuous_on_subset)
show "(i \<circ> g \<circ> r) ` S \<subseteq> S"
using assms(2,4,8) by force
qed
then obtain x where x: "x \<in> S" "(i \<circ> g \<circ> r) x = x" ..
then have *: "g (r x) \<in> T"
using assms(4,8) by auto
have "r ((i \<circ> g \<circ> r) x) = r x"
using x by auto
then show ?thesis
using "*" ri that by auto
qed
lemma homeomorphic_fixpoint_property:
fixes S :: "'a::topological_space set"
and T :: "'b::topological_space set"
assumes "S homeomorphic T"
shows "(\<forall>f. continuous_on S f \<and> f ` S \<subseteq> S \<longrightarrow> (\<exists>x\<in>S. f x = x)) \<longleftrightarrow>
(\<forall>g. continuous_on T g \<and> g ` T \<subseteq> T \<longrightarrow> (\<exists>y\<in>T. g y = y))"
(is "?lhs = ?rhs")
proof -
obtain r i where r:
"\<forall>x\<in>S. i (r x) = x" "r ` S = T" "continuous_on S r"
"\<forall>y\<in>T. r (i y) = y" "i ` T = S" "continuous_on T i"
using assms unfolding homeomorphic_def homeomorphism_def by blast
show ?thesis
proof
assume ?lhs
with r show ?rhs
by (metis invertible_fixpoint_property[of T i S r] order_refl)
next
assume ?rhs
with r show ?lhs
by (metis invertible_fixpoint_property[of S r T i] order_refl)
qed
qed
lemma retract_fixpoint_property:
fixes f :: "'a::topological_space \<Rightarrow> 'b::topological_space"
and S :: "'a set"
assumes "T retract_of S"
and FP: "\<And>f. \<lbrakk>continuous_on S f; f ` S \<subseteq> S\<rbrakk> \<Longrightarrow> \<exists>x\<in>S. f x = x"
and contg: "continuous_on T g"
and "g ` T \<subseteq> T"
obtains y where "y \<in> T" and "g y = y"
proof -
obtain h where "retraction S T h"
using assms(1) unfolding retract_of_def ..
then show ?thesis
unfolding retraction_def
using invertible_fixpoint_property[OF continuous_on_id _ _ _ _ FP]
by (metis assms(4) contg image_ident that)
qed
lemma retraction:
"retraction S T r \<longleftrightarrow>
T \<subseteq> S \<and> continuous_on S r \<and> r ` S = T \<and> (\<forall>x \<in> T. r x = x)"
by (force simp: retraction_def)
lemma retractionE: \<comment> \<open>yields properties normalized wrt. simp -- less likely to loop\<close>
assumes "retraction S T r"
obtains "T = r ` S" "r ` S \<subseteq> S" "continuous_on S r" "\<And>x. x \<in> S \<Longrightarrow> r (r x) = r x"
proof (rule that)
from retraction [of S T r] assms
have "T \<subseteq> S" "continuous_on S r" "r ` S = T" and "\<forall>x \<in> T. r x = x"
by simp_all
then show "T = r ` S" "r ` S \<subseteq> S" "continuous_on S r"
by simp_all
from \<open>\<forall>x \<in> T. r x = x\<close> have "r x = x" if "x \<in> T" for x
using that by simp
with \<open>r ` S = T\<close> show "r (r x) = r x" if "x \<in> S" for x
using that by auto
qed
lemma retract_ofE: \<comment> \<open>yields properties normalized wrt. simp -- less likely to loop\<close>
assumes "T retract_of S"
obtains r where "T = r ` S" "r ` S \<subseteq> S" "continuous_on S r" "\<And>x. x \<in> S \<Longrightarrow> r (r x) = r x"
proof -
from assms obtain r where "retraction S T r"
by (auto simp add: retract_of_def)
with that show thesis
by (auto elim: retractionE)
qed
lemma retract_of_imp_extensible:
assumes "S retract_of T" and "continuous_on S f" and "f ` S \<subseteq> U"
obtains g where "continuous_on T g" "g ` T \<subseteq> U" "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
proof -
from \<open>S retract_of T\<close> obtain r where "retraction T S r"
by (auto simp add: retract_of_def)
show thesis
by (rule that [of "f \<circ> r"])
(use \<open>continuous_on S f\<close> \<open>f ` S \<subseteq> U\<close> \<open>retraction T S r\<close> in \<open>auto simp: continuous_on_compose2 retraction\<close>)
qed
lemma idempotent_imp_retraction:
assumes "continuous_on S f" and "f ` S \<subseteq> S" and "\<And>x. x \<in> S \<Longrightarrow> f(f x) = f x"
shows "retraction S (f ` S) f"
by (simp add: assms retraction)
lemma retraction_subset:
assumes "retraction S T r" and "T \<subseteq> s'" and "s' \<subseteq> S"
shows "retraction s' T r"
unfolding retraction_def
by (metis assms continuous_on_subset image_mono retraction)
lemma retract_of_subset:
assumes "T retract_of S" and "T \<subseteq> s'" and "s' \<subseteq> S"
shows "T retract_of s'"
by (meson assms retract_of_def retraction_subset)
lemma retraction_refl [simp]: "retraction S S (\<lambda>x. x)"
by (simp add: retraction)
lemma retract_of_refl [iff]: "S retract_of S"
unfolding retract_of_def retraction_def
using continuous_on_id by blast
lemma retract_of_imp_subset:
"S retract_of T \<Longrightarrow> S \<subseteq> T"
by (simp add: retract_of_def retraction_def)
lemma retract_of_empty [simp]:
"({} retract_of S) \<longleftrightarrow> S = {}" "(S retract_of {}) \<longleftrightarrow> S = {}"
by (auto simp: retract_of_def retraction_def)
lemma retract_of_singleton [iff]: "({x} retract_of S) \<longleftrightarrow> x \<in> S"
unfolding retract_of_def retraction_def by force
lemma retraction_comp:
"\<lbrakk>retraction S T f; retraction T U g\<rbrakk>
\<Longrightarrow> retraction S U (g \<circ> f)"
apply (auto simp: retraction_def intro: continuous_on_compose2)
by blast
lemma retract_of_trans [trans]:
assumes "S retract_of T" and "T retract_of U"
shows "S retract_of U"
using assms by (auto simp: retract_of_def intro: retraction_comp)
lemma closedin_retract:
fixes S :: "'a :: t2_space set"
assumes "S retract_of T"
shows "closedin (top_of_set T) S"
proof -
obtain r where r: "S \<subseteq> T" "continuous_on T r" "r ` T \<subseteq> S" "\<And>x. x \<in> S \<Longrightarrow> r x = x"
using assms by (auto simp: retract_of_def retraction_def)
have "S = {x\<in>T. x = r x}"
using r by auto
also have "\<dots> = T \<inter> ((\<lambda>x. (x, r x)) -` ({y. \<exists>x. y = (x, x)}))"
unfolding vimage_def mem_Times_iff fst_conv snd_conv
using r
by auto
also have "closedin (top_of_set T) \<dots>"
by (rule continuous_closedin_preimage) (auto intro!: closed_diagonal continuous_on_Pair r)
finally show ?thesis .
qed
lemma closedin_self [simp]: "closedin (top_of_set S) S"
by simp
lemma retract_of_closed:
fixes S :: "'a :: t2_space set"
shows "\<lbrakk>closed T; S retract_of T\<rbrakk> \<Longrightarrow> closed S"
by (metis closedin_retract closedin_closed_eq)
lemma retract_of_compact:
"\<lbrakk>compact T; S retract_of T\<rbrakk> \<Longrightarrow> compact S"
by (metis compact_continuous_image retract_of_def retraction)
lemma retract_of_connected:
"\<lbrakk>connected T; S retract_of T\<rbrakk> \<Longrightarrow> connected S"
by (metis Topological_Spaces.connected_continuous_image retract_of_def retraction)
lemma retraction_openin_vimage_iff:
"openin (top_of_set S) (S \<inter> r -` U) \<longleftrightarrow> openin (top_of_set T) U"
if retraction: "retraction S T r" and "U \<subseteq> T"
using retraction apply (rule retractionE)
apply (rule continuous_right_inverse_imp_quotient_map [where g=r])
using \<open>U \<subseteq> T\<close> apply (auto elim: continuous_on_subset)
done
lemma retract_of_Times:
"\<lbrakk>S retract_of s'; T retract_of t'\<rbrakk> \<Longrightarrow> (S \<times> T) retract_of (s' \<times> t')"
apply (simp add: retract_of_def retraction_def Sigma_mono, clarify)
apply (rename_tac f g)
apply (rule_tac x="\<lambda>z. ((f \<circ> fst) z, (g \<circ> snd) z)" in exI)
apply (rule conjI continuous_intros | erule continuous_on_subset | force)+
done
subsection\<open>Retractions on a topological space\<close>
definition retract_of_space :: "'a set \<Rightarrow> 'a topology \<Rightarrow> bool" (infix "retract'_of'_space" 50)
where "S retract_of_space X
\<equiv> S \<subseteq> topspace X \<and> (\<exists>r. continuous_map X (subtopology X S) r \<and> (\<forall>x \<in> S. r x = x))"
lemma retract_of_space_retraction_maps:
"S retract_of_space X \<longleftrightarrow> S \<subseteq> topspace X \<and> (\<exists>r. retraction_maps X (subtopology X S) r id)"
by (auto simp: retract_of_space_def retraction_maps_def)
lemma retract_of_space_section_map:
"S retract_of_space X \<longleftrightarrow> S \<subseteq> topspace X \<and> section_map (subtopology X S) X id"
unfolding retract_of_space_def retraction_maps_def section_map_def
by (auto simp: continuous_map_from_subtopology)
lemma retract_of_space_imp_subset:
"S retract_of_space X \<Longrightarrow> S \<subseteq> topspace X"
by (simp add: retract_of_space_def)
lemma retract_of_space_topspace:
"topspace X retract_of_space X"
using retract_of_space_def by force
lemma retract_of_space_empty [simp]:
"{} retract_of_space X \<longleftrightarrow> topspace X = {}"
by (auto simp: continuous_map_def retract_of_space_def)
lemma retract_of_space_singleton [simp]:
"{a} retract_of_space X \<longleftrightarrow> a \<in> topspace X"
proof -
have "continuous_map X (subtopology X {a}) (\<lambda>x. a) \<and> (\<lambda>x. a) a = a" if "a \<in> topspace X"
using that by simp
then show ?thesis
by (force simp: retract_of_space_def)
qed
lemma retract_of_space_clopen:
assumes "openin X S" "closedin X S" "S = {} \<Longrightarrow> topspace X = {}"
shows "S retract_of_space X"
proof (cases "S = {}")
case False
then obtain a where "a \<in> S"
by blast
show ?thesis
unfolding retract_of_space_def
proof (intro exI conjI)
show "S \<subseteq> topspace X"
by (simp add: assms closedin_subset)
have "continuous_map X X (\<lambda>x. if x \<in> S then x else a)"
proof (rule continuous_map_cases)
show "continuous_map (subtopology X (X closure_of {x. x \<in> S})) X (\<lambda>x. x)"
by (simp add: continuous_map_from_subtopology)
show "continuous_map (subtopology X (X closure_of {x. x \<notin> S})) X (\<lambda>x. a)"
using \<open>S \<subseteq> topspace X\<close> \<open>a \<in> S\<close> by force
show "x = a" if "x \<in> X frontier_of {x. x \<in> S}" for x
using assms that clopenin_eq_frontier_of by fastforce
qed
then show "continuous_map X (subtopology X S) (\<lambda>x. if x \<in> S then x else a)"
using \<open>S \<subseteq> topspace X\<close> \<open>a \<in> S\<close> by (auto simp: continuous_map_in_subtopology)
qed auto
qed (use assms in auto)
lemma retract_of_space_disjoint_union:
assumes "openin X S" "openin X T" and ST: "disjnt S T" "S \<union> T = topspace X" and "S = {} \<Longrightarrow> topspace X = {}"
shows "S retract_of_space X"
proof (rule retract_of_space_clopen)
have "S \<inter> T = {}"
by (meson ST disjnt_def)
then have "S = topspace X - T"
using ST by auto
then show "closedin X S"
using \<open>openin X T\<close> by blast
qed (auto simp: assms)
lemma retraction_maps_section_image1:
assumes "retraction_maps X Y r s"
shows "s ` (topspace Y) retract_of_space X"
unfolding retract_of_space_section_map
proof
show "s ` topspace Y \<subseteq> topspace X"
using assms continuous_map_image_subset_topspace retraction_maps_def by blast
show "section_map (subtopology X (s ` topspace Y)) X id"
unfolding section_map_def
using assms retraction_maps_to_retract_maps by blast
qed
lemma retraction_maps_section_image2:
"retraction_maps X Y r s
\<Longrightarrow> subtopology X (s ` (topspace Y)) homeomorphic_space Y"
using embedding_map_imp_homeomorphic_space homeomorphic_space_sym section_imp_embedding_map
section_map_def by blast
subsection\<open>Paths and path-connectedness\<close>
definition pathin :: "'a topology \<Rightarrow> (real \<Rightarrow> 'a) \<Rightarrow> bool" where
"pathin X g \<equiv> continuous_map (subtopology euclideanreal {0..1}) X g"
lemma pathin_compose:
"\<lbrakk>pathin X g; continuous_map X Y f\<rbrakk> \<Longrightarrow> pathin Y (f \<circ> g)"
by (simp add: continuous_map_compose pathin_def)
lemma pathin_subtopology:
"pathin (subtopology X S) g \<longleftrightarrow> pathin X g \<and> (\<forall>x \<in> {0..1}. g x \<in> S)"
by (auto simp: pathin_def continuous_map_in_subtopology)
lemma pathin_const:
"pathin X (\<lambda>x. a) \<longleftrightarrow> a \<in> topspace X"
by (simp add: pathin_def)
lemma path_start_in_topspace: "pathin X g \<Longrightarrow> g 0 \<in> topspace X"
by (force simp: pathin_def continuous_map)
lemma path_finish_in_topspace: "pathin X g \<Longrightarrow> g 1 \<in> topspace X"
by (force simp: pathin_def continuous_map)
lemma path_image_subset_topspace: "pathin X g \<Longrightarrow> g ` ({0..1}) \<subseteq> topspace X"
by (force simp: pathin_def continuous_map)
definition path_connected_space :: "'a topology \<Rightarrow> bool"
where "path_connected_space X \<equiv> \<forall>x \<in> topspace X. \<forall> y \<in> topspace X. \<exists>g. pathin X g \<and> g 0 = x \<and> g 1 = y"
definition path_connectedin :: "'a topology \<Rightarrow> 'a set \<Rightarrow> bool"
where "path_connectedin X S \<equiv> S \<subseteq> topspace X \<and> path_connected_space(subtopology X S)"
lemma path_connectedin_absolute [simp]:
"path_connectedin (subtopology X S) S \<longleftrightarrow> path_connectedin X S"
by (simp add: path_connectedin_def subtopology_subtopology)
lemma path_connectedin_subset_topspace:
"path_connectedin X S \<Longrightarrow> S \<subseteq> topspace X"
by (simp add: path_connectedin_def)
lemma path_connectedin_subtopology:
"path_connectedin (subtopology X S) T \<longleftrightarrow> path_connectedin X T \<and> T \<subseteq> S"
by (auto simp: path_connectedin_def subtopology_subtopology inf.absorb2)
lemma path_connectedin:
"path_connectedin X S \<longleftrightarrow>
S \<subseteq> topspace X \<and>
(\<forall>x \<in> S. \<forall>y \<in> S. \<exists>g. pathin X g \<and> g ` {0..1} \<subseteq> S \<and> g 0 = x \<and> g 1 = y)"
unfolding path_connectedin_def path_connected_space_def pathin_def continuous_map_in_subtopology
by (intro conj_cong refl ball_cong) (simp_all add: inf.absorb_iff2)
lemma path_connectedin_topspace:
"path_connectedin X (topspace X) \<longleftrightarrow> path_connected_space X"
by (simp add: path_connectedin_def)
lemma path_connected_imp_connected_space:
assumes "path_connected_space X"
shows "connected_space X"
proof -
have *: "\<exists>S. connectedin X S \<and> g 0 \<in> S \<and> g 1 \<in> S" if "pathin X g" for g
proof (intro exI conjI)
have "continuous_map (subtopology euclideanreal {0..1}) X g"
using connectedin_absolute that by (simp add: pathin_def)
then show "connectedin X (g ` {0..1})"
by (rule connectedin_continuous_map_image) auto
qed auto
show ?thesis
using assms
by (auto intro: * simp add: path_connected_space_def connected_space_subconnected Ball_def)
qed
lemma path_connectedin_imp_connectedin:
"path_connectedin X S \<Longrightarrow> connectedin X S"
by (simp add: connectedin_def path_connected_imp_connected_space path_connectedin_def)
lemma path_connected_space_topspace_empty:
"topspace X = {} \<Longrightarrow> path_connected_space X"
by (simp add: path_connected_space_def)
lemma path_connectedin_empty [simp]: "path_connectedin X {}"
by (simp add: path_connectedin)
lemma path_connectedin_singleton [simp]: "path_connectedin X {a} \<longleftrightarrow> a \<in> topspace X"
proof
show "path_connectedin X {a} \<Longrightarrow> a \<in> topspace X"
by (simp add: path_connectedin)
show "a \<in> topspace X \<Longrightarrow> path_connectedin X {a}"
unfolding path_connectedin
using pathin_const by fastforce
qed
lemma path_connectedin_continuous_map_image:
assumes f: "continuous_map X Y f" and S: "path_connectedin X S"
shows "path_connectedin Y (f ` S)"
proof -
have fX: "f ` (topspace X) \<subseteq> topspace Y"
by (metis f continuous_map_image_subset_topspace)
show ?thesis
unfolding path_connectedin
proof (intro conjI ballI; clarify?)
fix x
assume "x \<in> S"
show "f x \<in> topspace Y"
by (meson S fX \<open>x \<in> S\<close> image_subset_iff path_connectedin_subset_topspace set_mp)
next
fix x y
assume "x \<in> S" and "y \<in> S"
then obtain g where g: "pathin X g" "g ` {0..1} \<subseteq> S" "g 0 = x" "g 1 = y"
using S by (force simp: path_connectedin)
show "\<exists>g. pathin Y g \<and> g ` {0..1} \<subseteq> f ` S \<and> g 0 = f x \<and> g 1 = f y"
proof (intro exI conjI)
show "pathin Y (f \<circ> g)"
using \<open>pathin X g\<close> f pathin_compose by auto
qed (use g in auto)
qed
qed
lemma path_connectedin_discrete_topology:
"path_connectedin (discrete_topology U) S \<longleftrightarrow> S \<subseteq> U \<and> (\<exists>a. S \<subseteq> {a})"
apply safe
using path_connectedin_subset_topspace apply fastforce
apply (meson connectedin_discrete_topology path_connectedin_imp_connectedin)
using subset_singletonD by fastforce
lemma path_connected_space_discrete_topology:
"path_connected_space (discrete_topology U) \<longleftrightarrow> (\<exists>a. U \<subseteq> {a})"
by (metis path_connectedin_discrete_topology path_connectedin_topspace path_connected_space_topspace_empty
subset_singletonD topspace_discrete_topology)
lemma homeomorphic_path_connected_space_imp:
"\<lbrakk>path_connected_space X; X homeomorphic_space Y\<rbrakk> \<Longrightarrow> path_connected_space Y"
unfolding homeomorphic_space_def homeomorphic_maps_def
by (metis (no_types, hide_lams) continuous_map_closedin continuous_map_image_subset_topspace imageI order_class.order.antisym path_connectedin_continuous_map_image path_connectedin_topspace subsetI)
lemma homeomorphic_path_connected_space:
"X homeomorphic_space Y \<Longrightarrow> path_connected_space X \<longleftrightarrow> path_connected_space Y"
by (meson homeomorphic_path_connected_space_imp homeomorphic_space_sym)
lemma homeomorphic_map_path_connectedness:
assumes "homeomorphic_map X Y f" "U \<subseteq> topspace X"
shows "path_connectedin Y (f ` U) \<longleftrightarrow> path_connectedin X U"
unfolding path_connectedin_def
proof (intro conj_cong homeomorphic_path_connected_space)
show "(f ` U \<subseteq> topspace Y) = (U \<subseteq> topspace X)"
using assms homeomorphic_imp_surjective_map by blast
next
assume "U \<subseteq> topspace X"
show "subtopology Y (f ` U) homeomorphic_space subtopology X U"
using assms unfolding homeomorphic_eq_everything_map
by (metis (no_types, hide_lams) assms homeomorphic_map_subtopologies homeomorphic_space homeomorphic_space_sym image_mono inf.absorb_iff2)
qed
lemma homeomorphic_map_path_connectedness_eq:
"homeomorphic_map X Y f \<Longrightarrow> path_connectedin X U \<longleftrightarrow> U \<subseteq> topspace X \<and> path_connectedin Y (f ` U)"
by (meson homeomorphic_map_path_connectedness path_connectedin_def)
subsection\<open>Connected components\<close>
definition connected_component_of :: "'a topology \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
where "connected_component_of X x y \<equiv>
\<exists>T. connectedin X T \<and> x \<in> T \<and> y \<in> T"
abbreviation connected_component_of_set
where "connected_component_of_set X x \<equiv> Collect (connected_component_of X x)"
definition connected_components_of :: "'a topology \<Rightarrow> ('a set) set"
where "connected_components_of X \<equiv> connected_component_of_set X ` topspace X"
lemma connected_component_in_topspace:
"connected_component_of X x y \<Longrightarrow> x \<in> topspace X \<and> y \<in> topspace X"
by (meson connected_component_of_def connectedin_subset_topspace in_mono)
lemma connected_component_of_refl:
"connected_component_of X x x \<longleftrightarrow> x \<in> topspace X"
by (meson connected_component_in_topspace connected_component_of_def connectedin_sing insertI1)
lemma connected_component_of_sym:
"connected_component_of X x y \<longleftrightarrow> connected_component_of X y x"
by (meson connected_component_of_def)
lemma connected_component_of_trans:
"\<lbrakk>connected_component_of X x y; connected_component_of X y z\<rbrakk>
\<Longrightarrow> connected_component_of X x z"
unfolding connected_component_of_def
using connectedin_Un by fastforce
lemma connected_component_of_mono:
"\<lbrakk>connected_component_of (subtopology X S) x y; S \<subseteq> T\<rbrakk>
\<Longrightarrow> connected_component_of (subtopology X T) x y"
by (metis connected_component_of_def connectedin_subtopology inf.absorb_iff2 subtopology_subtopology)
lemma connected_component_of_set:
"connected_component_of_set X x = {y. \<exists>T. connectedin X T \<and> x \<in> T \<and> y \<in> T}"
by (meson connected_component_of_def)
lemma connected_component_of_subset_topspace:
"connected_component_of_set X x \<subseteq> topspace X"
using connected_component_in_topspace by force
lemma connected_component_of_eq_empty:
"connected_component_of_set X x = {} \<longleftrightarrow> (x \<notin> topspace X)"
using connected_component_in_topspace connected_component_of_refl by fastforce
lemma connected_space_iff_connected_component:
"connected_space X \<longleftrightarrow> (\<forall>x \<in> topspace X. \<forall>y \<in> topspace X. connected_component_of X x y)"
by (simp add: connected_component_of_def connected_space_subconnected)
lemma connected_space_imp_connected_component_of:
"\<lbrakk>connected_space X; a \<in> topspace X; b \<in> topspace X\<rbrakk>
\<Longrightarrow> connected_component_of X a b"
by (simp add: connected_space_iff_connected_component)
lemma connected_space_connected_component_set:
"connected_space X \<longleftrightarrow> (\<forall>x \<in> topspace X. connected_component_of_set X x = topspace X)"
using connected_component_of_subset_topspace connected_space_iff_connected_component by fastforce
lemma connected_component_of_maximal:
"\<lbrakk>connectedin X S; x \<in> S\<rbrakk> \<Longrightarrow> S \<subseteq> connected_component_of_set X x"
by (meson Ball_Collect connected_component_of_def)
lemma connected_component_of_equiv:
"connected_component_of X x y \<longleftrightarrow>
x \<in> topspace X \<and> y \<in> topspace X \<and> connected_component_of X x = connected_component_of X y"
apply (simp add: connected_component_in_topspace fun_eq_iff)
by (meson connected_component_of_refl connected_component_of_sym connected_component_of_trans)
lemma connected_component_of_disjoint:
"disjnt (connected_component_of_set X x) (connected_component_of_set X y)
\<longleftrightarrow> ~(connected_component_of X x y)"
using connected_component_of_equiv unfolding disjnt_iff by force
lemma connected_component_of_eq:
"connected_component_of X x = connected_component_of X y \<longleftrightarrow>
(x \<notin> topspace X) \<and> (y \<notin> topspace X) \<or>
x \<in> topspace X \<and> y \<in> topspace X \<and>
connected_component_of X x y"
by (metis Collect_empty_eq_bot connected_component_of_eq_empty connected_component_of_equiv)
lemma connectedin_connected_component_of:
"connectedin X (connected_component_of_set X x)"
proof -
have "connected_component_of_set X x = \<Union> {T. connectedin X T \<and> x \<in> T}"
by (auto simp: connected_component_of_def)
then show ?thesis
apply (rule ssubst)
by (blast intro: connectedin_Union)
qed
lemma Union_connected_components_of:
"\<Union>(connected_components_of X) = topspace X"
unfolding connected_components_of_def
apply (rule equalityI)
apply (simp add: SUP_least connected_component_of_subset_topspace)
using connected_component_of_refl by fastforce
lemma connected_components_of_maximal:
"\<lbrakk>C \<in> connected_components_of X; connectedin X S; ~disjnt C S\<rbrakk> \<Longrightarrow> S \<subseteq> C"
unfolding connected_components_of_def disjnt_def
apply clarify
by (metis Int_emptyI connected_component_of_def connected_component_of_trans mem_Collect_eq)
lemma pairwise_disjoint_connected_components_of:
"pairwise disjnt (connected_components_of X)"
unfolding connected_components_of_def pairwise_def
apply clarify
by (metis connected_component_of_disjoint connected_component_of_equiv)
lemma complement_connected_components_of_Union:
"C \<in> connected_components_of X
\<Longrightarrow> topspace X - C = \<Union> (connected_components_of X - {C})"
apply (rule equalityI)
using Union_connected_components_of apply fastforce
by (metis Diff_cancel Diff_subset Union_connected_components_of cSup_singleton diff_Union_pairwise_disjoint equalityE insert_subsetI pairwise_disjoint_connected_components_of)
lemma nonempty_connected_components_of:
"C \<in> connected_components_of X \<Longrightarrow> C \<noteq> {}"
unfolding connected_components_of_def
by (metis (no_types, lifting) connected_component_of_eq_empty imageE)
lemma connected_components_of_subset:
"C \<in> connected_components_of X \<Longrightarrow> C \<subseteq> topspace X"
using Union_connected_components_of by fastforce
lemma connectedin_connected_components_of:
assumes "C \<in> connected_components_of X"
shows "connectedin X C"
proof -
have "C \<in> connected_component_of_set X ` topspace X"
using assms connected_components_of_def by blast
then show ?thesis
using connectedin_connected_component_of by fastforce
qed
lemma connected_component_in_connected_components_of:
"connected_component_of_set X a \<in> connected_components_of X \<longleftrightarrow> a \<in> topspace X"
apply (rule iffI)
using connected_component_of_eq_empty nonempty_connected_components_of apply fastforce
by (simp add: connected_components_of_def)
lemma connected_space_iff_components_eq:
"connected_space X \<longleftrightarrow> (\<forall>C \<in> connected_components_of X. \<forall>C' \<in> connected_components_of X. C = C')"
apply (rule iffI)
apply (force simp: connected_components_of_def connected_space_connected_component_set image_iff)
by (metis connected_component_in_connected_components_of connected_component_of_refl connected_space_iff_connected_component mem_Collect_eq)
lemma connected_components_of_eq_empty:
"connected_components_of X = {} \<longleftrightarrow> topspace X = {}"
by (simp add: connected_components_of_def)
lemma connected_components_of_empty_space:
"topspace X = {} \<Longrightarrow> connected_components_of X = {}"
by (simp add: connected_components_of_eq_empty)
lemma connected_components_of_subset_sing:
"connected_components_of X \<subseteq> {S} \<longleftrightarrow> connected_space X \<and> (topspace X = {} \<or> topspace X = S)"
proof (cases "topspace X = {}")
case True
then show ?thesis
by (simp add: connected_components_of_empty_space connected_space_topspace_empty)
next
case False
then show ?thesis
by (metis (no_types, hide_lams) Union_connected_components_of ccpo_Sup_singleton
connected_components_of_eq_empty connected_space_iff_components_eq insertI1 singletonD
subsetI subset_singleton_iff)
qed
lemma connected_space_iff_components_subset_singleton:
"connected_space X \<longleftrightarrow> (\<exists>a. connected_components_of X \<subseteq> {a})"
by (simp add: connected_components_of_subset_sing)
lemma connected_components_of_eq_singleton:
"connected_components_of X = {S}
\<longleftrightarrow> connected_space X \<and> topspace X \<noteq> {} \<and> S = topspace X"
by (metis ccpo_Sup_singleton connected_components_of_subset_sing insert_not_empty subset_singleton_iff)
lemma connected_components_of_connected_space:
"connected_space X \<Longrightarrow> connected_components_of X = (if topspace X = {} then {} else {topspace X})"
by (simp add: connected_components_of_eq_empty connected_components_of_eq_singleton)
lemma exists_connected_component_of_superset:
assumes "connectedin X S" and ne: "topspace X \<noteq> {}"
shows "\<exists>C. C \<in> connected_components_of X \<and> S \<subseteq> C"
proof (cases "S = {}")
case True
then show ?thesis
using ne connected_components_of_def by blast
next
case False
then show ?thesis
by (meson all_not_in_conv assms(1) connected_component_in_connected_components_of connected_component_of_maximal connectedin_subset_topspace in_mono)
qed
lemma closedin_connected_components_of:
assumes "C \<in> connected_components_of X"
shows "closedin X C"
proof -
obtain x where "x \<in> topspace X" and x: "C = connected_component_of_set X x"
using assms by (auto simp: connected_components_of_def)
have "connected_component_of_set X x \<subseteq> topspace X"
by (simp add: connected_component_of_subset_topspace)
moreover have "X closure_of connected_component_of_set X x \<subseteq> connected_component_of_set X x"
proof (rule connected_component_of_maximal)
show "connectedin X (X closure_of connected_component_of_set X x)"
by (simp add: connectedin_closure_of connectedin_connected_component_of)
show "x \<in> X closure_of connected_component_of_set X x"
by (simp add: \<open>x \<in> topspace X\<close> closure_of connected_component_of_refl)
qed
ultimately
show ?thesis
using closure_of_subset_eq x by auto
qed
lemma closedin_connected_component_of:
"closedin X (connected_component_of_set X x)"
by (metis closedin_connected_components_of closedin_empty connected_component_in_connected_components_of connected_component_of_eq_empty)
lemma connected_component_of_eq_overlap:
"connected_component_of_set X x = connected_component_of_set X y \<longleftrightarrow>
(x \<notin> topspace X) \<and> (y \<notin> topspace X) \<or>
~(connected_component_of_set X x \<inter> connected_component_of_set X y = {})"
using connected_component_of_equiv by fastforce
lemma connected_component_of_nonoverlap:
"connected_component_of_set X x \<inter> connected_component_of_set X y = {} \<longleftrightarrow>
(x \<notin> topspace X) \<or> (y \<notin> topspace X) \<or>
~(connected_component_of_set X x = connected_component_of_set X y)"
by (metis connected_component_of_eq_empty connected_component_of_eq_overlap inf.idem)
lemma connected_component_of_overlap:
"~(connected_component_of_set X x \<inter> connected_component_of_set X y = {}) \<longleftrightarrow>
x \<in> topspace X \<and> y \<in> topspace X \<and>
connected_component_of_set X x = connected_component_of_set X y"
by (meson connected_component_of_nonoverlap)
end