tuned code to avoid noncanonical (and risky) exception handling
(* Title: HOL/Presburger.thy Author: Amine Chaieb, TU Muenchen*)header {* Decision Procedure for Presburger Arithmetic *}theory Presburgerimports Groebner_Basis Set_IntervalbeginML_file "Tools/Qelim/qelim.ML"ML_file "Tools/Qelim/cooper_procedure.ML"subsection{* The @{text "-\<infinity>"} and @{text "+\<infinity>"} Properties *}lemma minf: "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x<z. P x = P' x; \<exists>z.\<forall>x<z. Q x = Q' x\<rbrakk> \<Longrightarrow> \<exists>z.\<forall>x<z. (P x \<and> Q x) = (P' x \<and> Q' x)" "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x<z. P x = P' x; \<exists>z.\<forall>x<z. Q x = Q' x\<rbrakk> \<Longrightarrow> \<exists>z.\<forall>x<z. (P x \<or> Q x) = (P' x \<or> Q' x)" "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x = t) = False" "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<noteq> t) = True" "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x < t) = True" "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<le> t) = True" "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x > t) = False" "\<exists>(z ::'a::{linorder}).\<forall>x<z.(x \<ge> t) = False" "\<exists>z.\<forall>(x::'b::{linorder,plus,Rings.dvd})<z. (d dvd x + s) = (d dvd x + s)" "\<exists>z.\<forall>(x::'b::{linorder,plus,Rings.dvd})<z. (\<not> d dvd x + s) = (\<not> d dvd x + s)" "\<exists>z.\<forall>x<z. F = F" by ((erule exE, erule exE,rule_tac x="min z za" in exI,simp)+, (rule_tac x="t" in exI,fastforce)+) simp_alllemma pinf: "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x>z. P x = P' x; \<exists>z.\<forall>x>z. Q x = Q' x\<rbrakk> \<Longrightarrow> \<exists>z.\<forall>x>z. (P x \<and> Q x) = (P' x \<and> Q' x)" "\<lbrakk>\<exists>(z ::'a::linorder).\<forall>x>z. P x = P' x; \<exists>z.\<forall>x>z. Q x = Q' x\<rbrakk> \<Longrightarrow> \<exists>z.\<forall>x>z. (P x \<or> Q x) = (P' x \<or> Q' x)" "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x = t) = False" "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<noteq> t) = True" "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x < t) = False" "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<le> t) = False" "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x > t) = True" "\<exists>(z ::'a::{linorder}).\<forall>x>z.(x \<ge> t) = True" "\<exists>z.\<forall>(x::'b::{linorder,plus,Rings.dvd})>z. (d dvd x + s) = (d dvd x + s)" "\<exists>z.\<forall>(x::'b::{linorder,plus,Rings.dvd})>z. (\<not> d dvd x + s) = (\<not> d dvd x + s)" "\<exists>z.\<forall>x>z. F = F" by ((erule exE, erule exE,rule_tac x="max z za" in exI,simp)+,(rule_tac x="t" in exI,fastforce)+) simp_alllemma inf_period: "\<lbrakk>\<forall>x k. P x = P (x - k*D); \<forall>x k. Q x = Q (x - k*D)\<rbrakk> \<Longrightarrow> \<forall>x k. (P x \<and> Q x) = (P (x - k*D) \<and> Q (x - k*D))" "\<lbrakk>\<forall>x k. P x = P (x - k*D); \<forall>x k. Q x = Q (x - k*D)\<rbrakk> \<Longrightarrow> \<forall>x k. (P x \<or> Q x) = (P (x - k*D) \<or> Q (x - k*D))" "(d::'a::{comm_ring,Rings.dvd}) dvd D \<Longrightarrow> \<forall>x k. (d dvd x + t) = (d dvd (x - k*D) + t)" "(d::'a::{comm_ring,Rings.dvd}) dvd D \<Longrightarrow> \<forall>x k. (\<not>d dvd x + t) = (\<not>d dvd (x - k*D) + t)" "\<forall>x k. F = F"apply (auto elim!: dvdE simp add: algebra_simps)unfolding mult_assoc [symmetric] distrib_right [symmetric] left_diff_distrib [symmetric]unfolding dvd_def mult_commute [of d] by autosubsection{* The A and B sets *}lemma bset: "\<lbrakk>\<forall>x.(\<forall>j \<in> {1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> P x \<longrightarrow> P(x - D) ; \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> Q x \<longrightarrow> Q(x - D)\<rbrakk> \<Longrightarrow> \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j) \<longrightarrow> (P x \<and> Q x) \<longrightarrow> (P(x - D) \<and> Q (x - D))" "\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> P x \<longrightarrow> P(x - D) ; \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> Q x \<longrightarrow> Q(x - D)\<rbrakk> \<Longrightarrow> \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (P x \<or> Q x) \<longrightarrow> (P(x - D) \<or> Q (x - D))" "\<lbrakk>D>0; t - 1\<in> B\<rbrakk> \<Longrightarrow> (\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x = t) \<longrightarrow> (x - D = t))" "\<lbrakk>D>0 ; t \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x - D \<noteq> t))" "D>0 \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x < t) \<longrightarrow> (x - D < t))" "D>0 \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x - D \<le> t))" "\<lbrakk>D>0 ; t \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x > t) \<longrightarrow> (x - D > t))" "\<lbrakk>D>0 ; t - 1 \<in> B\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x - D \<ge> t))" "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x - D) + t))" "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not> d dvd (x - D) + t))" "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j) \<longrightarrow> F \<longrightarrow> F"proof (blast, blast) assume dp: "D > 0" and tB: "t - 1\<in> B" show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x = t) \<longrightarrow> (x - D = t))" apply (rule allI, rule impI,erule ballE[where x="1"],erule ballE[where x="t - 1"]) apply algebra using dp tB by simp_allnext assume dp: "D > 0" and tB: "t \<in> B" show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x - D \<noteq> t))" apply (rule allI, rule impI,erule ballE[where x="D"],erule ballE[where x="t"]) apply algebra using dp tB by simp_allnext assume dp: "D > 0" thus "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x < t) \<longrightarrow> (x - D < t))" by arithnext assume dp: "D > 0" thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x - D \<le> t)" by arithnext assume dp: "D > 0" and tB:"t \<in> B" {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j" and g: "x > t" and ng: "\<not> (x - D) > t" hence "x -t \<le> D" and "1 \<le> x - t" by simp+ hence "\<exists>j \<in> {1 .. D}. x - t = j" by auto hence "\<exists>j \<in> {1 .. D}. x = t + j" by (simp add: algebra_simps) with nob tB have "False" by simp} thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x > t) \<longrightarrow> (x - D > t)" by blastnext assume dp: "D > 0" and tB:"t - 1\<in> B" {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j" and g: "x \<ge> t" and ng: "\<not> (x - D) \<ge> t" hence "x - (t - 1) \<le> D" and "1 \<le> x - (t - 1)" by simp+ hence "\<exists>j \<in> {1 .. D}. x - (t - 1) = j" by auto hence "\<exists>j \<in> {1 .. D}. x = (t - 1) + j" by (simp add: algebra_simps) with nob tB have "False" by simp} thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x - D \<ge> t)" by blastnext assume d: "d dvd D" {fix x assume H: "d dvd x + t" with d have "d dvd (x - D) + t" by algebra} thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x - D) + t)" by simpnext assume d: "d dvd D" {fix x assume H: "\<not>(d dvd x + t)" with d have "\<not> d dvd (x - D) + t" by (clarsimp simp add: dvd_def,erule_tac x= "ka + k" in allE,simp add: algebra_simps)} thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>B. x \<noteq> b + j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not>d dvd (x - D) + t)" by autoqed blastlemma aset: "\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> P x \<longrightarrow> P(x + D) ; \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> Q x \<longrightarrow> Q(x + D)\<rbrakk> \<Longrightarrow> \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j) \<longrightarrow> (P x \<and> Q x) \<longrightarrow> (P(x + D) \<and> Q (x + D))" "\<lbrakk>\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> P x \<longrightarrow> P(x + D) ; \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> Q x \<longrightarrow> Q(x + D)\<rbrakk> \<Longrightarrow> \<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (P x \<or> Q x) \<longrightarrow> (P(x + D) \<or> Q (x + D))" "\<lbrakk>D>0; t + 1\<in> A\<rbrakk> \<Longrightarrow> (\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x = t) \<longrightarrow> (x + D = t))" "\<lbrakk>D>0 ; t \<in> A\<rbrakk> \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x + D \<noteq> t))" "\<lbrakk>D>0; t\<in> A\<rbrakk> \<Longrightarrow>(\<forall>(x::int). (\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x < t) \<longrightarrow> (x + D < t))" "\<lbrakk>D>0; t + 1 \<in> A\<rbrakk> \<Longrightarrow> (\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x + D \<le> t))" "D>0 \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x > t) \<longrightarrow> (x + D > t))" "D>0 \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x + D \<ge> t))" "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x + D) + t))" "d dvd D \<Longrightarrow>(\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not> d dvd (x + D) + t))" "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j) \<longrightarrow> F \<longrightarrow> F"proof (blast, blast) assume dp: "D > 0" and tA: "t + 1 \<in> A" show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x = t) \<longrightarrow> (x + D = t))" apply (rule allI, rule impI,erule ballE[where x="1"],erule ballE[where x="t + 1"]) using dp tA by simp_allnext assume dp: "D > 0" and tA: "t \<in> A" show "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<noteq> t) \<longrightarrow> (x + D \<noteq> t))" apply (rule allI, rule impI,erule ballE[where x="D"],erule ballE[where x="t"]) using dp tA by simp_allnext assume dp: "D > 0" thus "(\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x > t) \<longrightarrow> (x + D > t))" by arithnext assume dp: "D > 0" thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<ge> t) \<longrightarrow> (x + D \<ge> t)" by arithnext assume dp: "D > 0" and tA:"t \<in> A" {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j" and g: "x < t" and ng: "\<not> (x + D) < t" hence "t - x \<le> D" and "1 \<le> t - x" by simp+ hence "\<exists>j \<in> {1 .. D}. t - x = j" by auto hence "\<exists>j \<in> {1 .. D}. x = t - j" by (auto simp add: algebra_simps) with nob tA have "False" by simp} thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x < t) \<longrightarrow> (x + D < t)" by blastnext assume dp: "D > 0" and tA:"t + 1\<in> A" {fix x assume nob: "\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j" and g: "x \<le> t" and ng: "\<not> (x + D) \<le> t" hence "(t + 1) - x \<le> D" and "1 \<le> (t + 1) - x" by (simp_all add: algebra_simps) hence "\<exists>j \<in> {1 .. D}. (t + 1) - x = j" by auto hence "\<exists>j \<in> {1 .. D}. x = (t + 1) - j" by (auto simp add: algebra_simps) with nob tA have "False" by simp} thus "\<forall>x.(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (x \<le> t) \<longrightarrow> (x + D \<le> t)" by blastnext assume d: "d dvd D" {fix x assume H: "d dvd x + t" with d have "d dvd (x + D) + t" by (clarsimp simp add: dvd_def,rule_tac x= "ka + k" in exI,simp add: algebra_simps)} thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (d dvd x+t) \<longrightarrow> (d dvd (x + D) + t)" by simpnext assume d: "d dvd D" {fix x assume H: "\<not>(d dvd x + t)" with d have "\<not>d dvd (x + D) + t" by (clarsimp simp add: dvd_def,erule_tac x= "ka - k" in allE,simp add: algebra_simps)} thus "\<forall>(x::int).(\<forall>j\<in>{1 .. D}. \<forall>b\<in>A. x \<noteq> b - j)\<longrightarrow> (\<not>d dvd x+t) \<longrightarrow> (\<not>d dvd (x + D) + t)" by autoqed blastsubsection{* Cooper's Theorem @{text "-\<infinity>"} and @{text "+\<infinity>"} Version *}subsubsection{* First some trivial facts about periodic sets or predicates *}lemma periodic_finite_ex: assumes dpos: "(0::int) < d" and modd: "ALL x k. P x = P(x - k*d)" shows "(EX x. P x) = (EX j : {1..d}. P j)" (is "?LHS = ?RHS")proof assume ?LHS then obtain x where P: "P x" .. have "x mod d = x - (x div d)*d" by(simp add:zmod_zdiv_equality mult_ac eq_diff_eq) hence Pmod: "P x = P(x mod d)" using modd by simp show ?RHS proof (cases) assume "x mod d = 0" hence "P 0" using P Pmod by simp moreover have "P 0 = P(0 - (-1)*d)" using modd by blast ultimately have "P d" by simp moreover have "d : {1..d}" using dpos by simp ultimately show ?RHS .. next assume not0: "x mod d \<noteq> 0" have "P(x mod d)" using dpos P Pmod by simp moreover have "x mod d : {1..d}" proof - from dpos have "0 \<le> x mod d" by(rule pos_mod_sign) moreover from dpos have "x mod d < d" by(rule pos_mod_bound) ultimately show ?thesis using not0 by simp qed ultimately show ?RHS .. qedqed autosubsubsection{* The @{text "-\<infinity>"} Version*}lemma decr_lemma: "0 < (d::int) \<Longrightarrow> x - (abs(x-z)+1) * d < z"by(induct rule: int_gr_induct,simp_all add:int_distrib)lemma incr_lemma: "0 < (d::int) \<Longrightarrow> z < x + (abs(x-z)+1) * d"by(induct rule: int_gr_induct, simp_all add:int_distrib)lemma decr_mult_lemma: assumes dpos: "(0::int) < d" and minus: "\<forall>x. P x \<longrightarrow> P(x - d)" and knneg: "0 <= k" shows "ALL x. P x \<longrightarrow> P(x - k*d)"using knnegproof (induct rule:int_ge_induct) case base thus ?case by simpnext case (step i) {fix x have "P x \<longrightarrow> P (x - i * d)" using step.hyps by blast also have "\<dots> \<longrightarrow> P(x - (i + 1) * d)" using minus[THEN spec, of "x - i * d"] by (simp add: algebra_simps) ultimately have "P x \<longrightarrow> P(x - (i + 1) * d)" by blast} thus ?case ..qedlemma minusinfinity: assumes dpos: "0 < d" and P1eqP1: "ALL x k. P1 x = P1(x - k*d)" and ePeqP1: "EX z::int. ALL x. x < z \<longrightarrow> (P x = P1 x)" shows "(EX x. P1 x) \<longrightarrow> (EX x. P x)"proof assume eP1: "EX x. P1 x" then obtain x where P1: "P1 x" .. from ePeqP1 obtain z where P1eqP: "ALL x. x < z \<longrightarrow> (P x = P1 x)" .. let ?w = "x - (abs(x-z)+1) * d" from dpos have w: "?w < z" by(rule decr_lemma) have "P1 x = P1 ?w" using P1eqP1 by blast also have "\<dots> = P(?w)" using w P1eqP by blast finally have "P ?w" using P1 by blast thus "EX x. P x" ..qedlemma cpmi: assumes dp: "0 < D" and p1:"\<exists>z. \<forall> x< z. P x = P' x" and nb:"\<forall>x.(\<forall> j\<in> {1..D}. \<forall>(b::int) \<in> B. x \<noteq> b+j) --> P (x) --> P (x - D)" and pd: "\<forall> x k. P' x = P' (x-k*D)" shows "(\<exists>x. P x) = ((\<exists> j\<in> {1..D} . P' j) | (\<exists> j \<in> {1..D}.\<exists> b\<in> B. P (b+j)))" (is "?L = (?R1 \<or> ?R2)")proof- {assume "?R2" hence "?L" by blast} moreover {assume H:"?R1" hence "?L" using minusinfinity[OF dp pd p1] periodic_finite_ex[OF dp pd] by simp} moreover { fix x assume P: "P x" and H: "\<not> ?R2" {fix y assume "\<not> (\<exists>j\<in>{1..D}. \<exists>b\<in>B. P (b + j))" and P: "P y" hence "~(EX (j::int) : {1..D}. EX (b::int) : B. y = b+j)" by auto with nb P have "P (y - D)" by auto } hence "ALL x.~(EX (j::int) : {1..D}. EX (b::int) : B. P(b+j)) --> P (x) --> P (x - D)" by blast with H P have th: " \<forall>x. P x \<longrightarrow> P (x - D)" by auto from p1 obtain z where z: "ALL x. x < z --> (P x = P' x)" by blast let ?y = "x - (\<bar>x - z\<bar> + 1)*D" have zp: "0 <= (\<bar>x - z\<bar> + 1)" by arith from dp have yz: "?y < z" using decr_lemma[OF dp] by simp from z[rule_format, OF yz] decr_mult_lemma[OF dp th zp, rule_format, OF P] have th2: " P' ?y" by auto with periodic_finite_ex[OF dp pd] have "?R1" by blast} ultimately show ?thesis by blastqedsubsubsection {* The @{text "+\<infinity>"} Version*}lemma plusinfinity: assumes dpos: "(0::int) < d" and P1eqP1: "\<forall>x k. P' x = P'(x - k*d)" and ePeqP1: "\<exists> z. \<forall> x>z. P x = P' x" shows "(\<exists> x. P' x) \<longrightarrow> (\<exists> x. P x)"proof assume eP1: "EX x. P' x" then obtain x where P1: "P' x" .. from ePeqP1 obtain z where P1eqP: "\<forall>x>z. P x = P' x" .. let ?w' = "x + (abs(x-z)+1) * d" let ?w = "x - (-(abs(x-z) + 1))*d" have ww'[simp]: "?w = ?w'" by (simp add: algebra_simps) from dpos have w: "?w > z" by(simp only: ww' incr_lemma) hence "P' x = P' ?w" using P1eqP1 by blast also have "\<dots> = P(?w)" using w P1eqP by blast finally have "P ?w" using P1 by blast thus "EX x. P x" ..qedlemma incr_mult_lemma: assumes dpos: "(0::int) < d" and plus: "ALL x::int. P x \<longrightarrow> P(x + d)" and knneg: "0 <= k" shows "ALL x. P x \<longrightarrow> P(x + k*d)"using knnegproof (induct rule:int_ge_induct) case base thus ?case by simpnext case (step i) {fix x have "P x \<longrightarrow> P (x + i * d)" using step.hyps by blast also have "\<dots> \<longrightarrow> P(x + (i + 1) * d)" using plus[THEN spec, of "x + i * d"] by (simp add:int_distrib add_ac) ultimately have "P x \<longrightarrow> P(x + (i + 1) * d)" by blast} thus ?case ..qedlemma cppi: assumes dp: "0 < D" and p1:"\<exists>z. \<forall> x> z. P x = P' x" and nb:"\<forall>x.(\<forall> j\<in> {1..D}. \<forall>(b::int) \<in> A. x \<noteq> b - j) --> P (x) --> P (x + D)" and pd: "\<forall> x k. P' x= P' (x-k*D)" shows "(\<exists>x. P x) = ((\<exists> j\<in> {1..D} . P' j) | (\<exists> j \<in> {1..D}.\<exists> b\<in> A. P (b - j)))" (is "?L = (?R1 \<or> ?R2)")proof- {assume "?R2" hence "?L" by blast} moreover {assume H:"?R1" hence "?L" using plusinfinity[OF dp pd p1] periodic_finite_ex[OF dp pd] by simp} moreover { fix x assume P: "P x" and H: "\<not> ?R2" {fix y assume "\<not> (\<exists>j\<in>{1..D}. \<exists>b\<in>A. P (b - j))" and P: "P y" hence "~(EX (j::int) : {1..D}. EX (b::int) : A. y = b - j)" by auto with nb P have "P (y + D)" by auto } hence "ALL x.~(EX (j::int) : {1..D}. EX (b::int) : A. P(b-j)) --> P (x) --> P (x + D)" by blast with H P have th: " \<forall>x. P x \<longrightarrow> P (x + D)" by auto from p1 obtain z where z: "ALL x. x > z --> (P x = P' x)" by blast let ?y = "x + (\<bar>x - z\<bar> + 1)*D" have zp: "0 <= (\<bar>x - z\<bar> + 1)" by arith from dp have yz: "?y > z" using incr_lemma[OF dp] by simp from z[rule_format, OF yz] incr_mult_lemma[OF dp th zp, rule_format, OF P] have th2: " P' ?y" by auto with periodic_finite_ex[OF dp pd] have "?R1" by blast} ultimately show ?thesis by blastqedlemma simp_from_to: "{i..j::int} = (if j < i then {} else insert i {i+1..j})"apply(simp add:atLeastAtMost_def atLeast_def atMost_def)apply(fastforce)donetheorem unity_coeff_ex: "(\<exists>(x::'a::{semiring_0,Rings.dvd}). P (l * x)) \<equiv> (\<exists>x. l dvd (x + 0) \<and> P x)" apply (rule eq_reflection [symmetric]) apply (rule iffI) defer apply (erule exE) apply (rule_tac x = "l * x" in exI) apply (simp add: dvd_def) apply (rule_tac x = x in exI, simp) apply (erule exE) apply (erule conjE) apply simp apply (erule dvdE) apply (rule_tac x = k in exI) apply simp donelemma zdvd_mono: fixes k m t :: int assumes "k \<noteq> 0" shows "m dvd t \<equiv> k * m dvd k * t" using assms by simplemma uminus_dvd_conv: fixes d t :: int shows "d dvd t \<equiv> - d dvd t" and "d dvd t \<equiv> d dvd - t" by simp_alltext {* \bigskip Theorems for transforming predicates on nat to predicates on @{text int}*}lemma zdiff_int_split: "P (int (x - y)) = ((y \<le> x \<longrightarrow> P (int x - int y)) \<and> (x < y \<longrightarrow> P 0))" by (cases "y \<le> x") (simp_all add: zdiff_int)text {* \medskip Specific instances of congruence rules, to prevent simplifier from looping. *}theorem imp_le_cong: "\<lbrakk>x = x'; 0 \<le> x' \<Longrightarrow> P = P'\<rbrakk> \<Longrightarrow> (0 \<le> (x::int) \<longrightarrow> P) = (0 \<le> x' \<longrightarrow> P')" by simptheorem conj_le_cong: "\<lbrakk>x = x'; 0 \<le> x' \<Longrightarrow> P = P'\<rbrakk> \<Longrightarrow> (0 \<le> (x::int) \<and> P) = (0 \<le> x' \<and> P')" by (simp cong: conj_cong)ML_file "Tools/Qelim/cooper.ML"setup Cooper.setupmethod_setup presburger = {* let fun keyword k = Scan.lift (Args.$$$ k -- Args.colon) >> K () fun simple_keyword k = Scan.lift (Args.$$$ k) >> K () val addN = "add" val delN = "del" val elimN = "elim" val any_keyword = keyword addN || keyword delN || simple_keyword elimN val thms = Scan.repeat (Scan.unless any_keyword Attrib.multi_thm) >> flat; in Scan.optional (simple_keyword elimN >> K false) true -- Scan.optional (keyword addN |-- thms) [] -- Scan.optional (keyword delN |-- thms) [] >> (fn ((elim, add_ths), del_ths) => fn ctxt => SIMPLE_METHOD' (Cooper.tac elim add_ths del_ths ctxt)) end*} "Cooper's algorithm for Presburger arithmetic"declare dvd_eq_mod_eq_0 [symmetric, presburger]declare mod_1 [presburger] declare mod_0 [presburger]declare mod_by_1 [presburger]declare mod_self [presburger]declare div_by_0 [presburger]declare mod_by_0 [presburger]declare mod_div_trivial [presburger]declare div_mod_equality2 [presburger]declare div_mod_equality [presburger]declare mod_div_equality2 [presburger]declare mod_div_equality [presburger]declare mod_mult_self1 [presburger]declare mod_mult_self2 [presburger]declare mod2_Suc_Suc[presburger]declare not_mod_2_eq_0_eq_1 [presburger] declare nat_zero_less_power_iff [presburger]lemma [presburger, algebra]: "m mod 2 = (1::nat) \<longleftrightarrow> \<not> 2 dvd m " by presburgerlemma [presburger, algebra]: "m mod 2 = Suc 0 \<longleftrightarrow> \<not> 2 dvd m " by presburgerlemma [presburger, algebra]: "m mod (Suc (Suc 0)) = (1::nat) \<longleftrightarrow> \<not> 2 dvd m " by presburgerlemma [presburger, algebra]: "m mod (Suc (Suc 0)) = Suc 0 \<longleftrightarrow> \<not> 2 dvd m " by presburgerlemma [presburger, algebra]: "m mod 2 = (1::int) \<longleftrightarrow> \<not> 2 dvd m " by presburgerend