more fundamental pred-to-set conversions for range and domain by means of inductive_set
(* Title: HOL/ex/Coercion_Examples.thy
Author: Dmitriy Traytel, TU Muenchen
Examples for coercive subtyping via subtype constraints.
*)
theory Coercion_Examples
imports Complex_Main
begin
(* Error messages test *)
consts func :: "(nat \<Rightarrow> int) \<Rightarrow> nat"
consts arg :: "int \<Rightarrow> nat"
(* Invariant arguments
term "func arg"
*)
(* No subtype relation - constraint
term "(1::nat)::int"
*)
consts func' :: "int \<Rightarrow> int"
consts arg' :: "nat"
(* No subtype relation - function application
term "func' arg'"
*)
(* Uncomparable types in bound
term "arg' = True"
*)
(* Unfullfilled type class requirement
term "1 = True"
*)
(* Different constructors
term "[1::int] = func"
*)
(* Coercion/type maps definitions *)
primrec nat_of_bool :: "bool \<Rightarrow> nat"
where
"nat_of_bool False = 0"
| "nat_of_bool True = 1"
declare [[coercion nat_of_bool]]
declare [[coercion int]]
declare [[coercion_map map]]
definition map_fun :: "('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'd)" where
"map_fun f g h = g o h o f"
declare [[coercion_map "\<lambda> f g h . g o h o f"]]
primrec map_pair :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a * 'b) \<Rightarrow> ('c * 'd)" where
"map_pair f g (x,y) = (f x, g y)"
declare [[coercion_map map_pair]]
(* Examples taken from the haskell draft implementation *)
term "(1::nat) = True"
term "True = (1::nat)"
term "(1::nat) = (True = (1::nat))"
term "op = (True = (1::nat))"
term "[1::nat,True]"
term "[True,1::nat]"
term "[1::nat] = [True]"
term "[True] = [1::nat]"
term "[[True]] = [[1::nat]]"
term "[[[[[[[[[[True]]]]]]]]]] = [[[[[[[[[[1::nat]]]]]]]]]]"
term "[[True],[42::nat]] = rev [[True]]"
term "rev [10000::nat] = [False, 420000::nat, True]"
term "\<lambda> x . x = (3::nat)"
term "(\<lambda> x . x = (3::nat)) True"
term "map (\<lambda> x . x = (3::nat))"
term "map (\<lambda> x . x = (3::nat)) [True,1::nat]"
consts bnn :: "(bool \<Rightarrow> nat) \<Rightarrow> nat"
consts nb :: "nat \<Rightarrow> bool"
consts ab :: "'a \<Rightarrow> bool"
term "bnn nb"
term "bnn ab"
term "\<lambda> x . x = (3::int)"
term "map (\<lambda> x . x = (3::int)) [True]"
term "map (\<lambda> x . x = (3::int)) [True,1::nat]"
term "map (\<lambda> x . x = (3::int)) [True,1::nat,1::int]"
term "[1::nat,True,1::int,False]"
term "map (map (\<lambda> x . x = (3::int))) [[True],[1::nat],[True,1::int]]"
consts cbool :: "'a \<Rightarrow> bool"
consts cnat :: "'a \<Rightarrow> nat"
consts cint :: "'a \<Rightarrow> int"
term "[id, cbool, cnat, cint]"
consts funfun :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
consts flip :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'c"
term "flip funfun"
term "map funfun [id,cnat,cint,cbool]"
term "map (flip funfun True)"
term "map (flip funfun True) [id,cnat,cint,cbool]"
consts ii :: "int \<Rightarrow> int"
consts aaa :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"
consts nlist :: "nat list"
consts ilil :: "int list \<Rightarrow> int list"
term "ii (aaa (1::nat) True)"
term "map ii nlist"
term "ilil nlist"
(***************************************************)
(* Other examples *)
definition xs :: "bool list" where "xs = [True]"
term "(xs::nat list)"
term "(1::nat) = True"
term "True = (1::nat)"
term "int (1::nat)"
term "((True::nat)::int)"
term "1::nat"
term "nat 1"
definition C :: nat
where "C = 123"
consts g :: "int \<Rightarrow> int"
consts h :: "nat \<Rightarrow> nat"
term "(g (1::nat)) + (h 2)"
term "g 1"
term "1+(1::nat)"
term "((1::int) + (1::nat),(1::int))"
definition ys :: "bool list list list list list" where "ys=[[[[[True]]]]]"
term "ys=[[[[[1::nat]]]]]"
end