(* Title: HOLCF/Cprod1.ML
ID: $Id$
Author: Franz Regensburger
Copyright 1993 Technische Universitaet Muenchen
Lemmas for theory Cprod1.thy
*)
open Cprod1;
(* ------------------------------------------------------------------------ *)
(* less_cprod is a partial order on 'a * 'b *)
(* ------------------------------------------------------------------------ *)
qed_goal "Sel_injective_cprod" Prod.thy
"[|fst x = fst y; snd x = snd y|] ==> x = y"
(fn prems =>
[
(cut_facts_tac prems 1),
(subgoal_tac "(fst x,snd x)=(fst y,snd y)" 1),
(rotate_tac ~1 1),
(asm_full_simp_tac(HOL_ss addsimps[surjective_pairing RS sym])1),
(asm_simp_tac (simpset_of Prod.thy) 1)
]);
qed_goalw "refl_less_cprod" Cprod1.thy [less_cprod_def] "(p::'a*'b) << p"
(fn prems => [Simp_tac 1]);
qed_goalw "antisym_less_cprod" thy [less_cprod_def]
"[|(p1::'a * 'b) << p2;p2 << p1|] ==> p1=p2"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac Sel_injective_cprod 1),
(fast_tac (HOL_cs addIs [antisym_less]) 1),
(fast_tac (HOL_cs addIs [antisym_less]) 1)
]);
qed_goalw "trans_less_cprod" thy [less_cprod_def]
"[|(p1::'a*'b) << p2;p2 << p3|] ==> p1 << p3"
(fn prems =>
[
(cut_facts_tac prems 1),
(rtac conjI 1),
(fast_tac (HOL_cs addIs [trans_less]) 1),
(fast_tac (HOL_cs addIs [trans_less]) 1)
]);