(* Title: HOLCF/IOA/TrivEx.thy
ID: $Id$
Author: Olaf Mueller
Copyright 1995 TU Muenchen
Trivial Abstraction Example
*)
TrivEx = Abstraction +
datatype action = INC
consts
C_asig :: "action signature"
C_trans :: (action, nat)transition set
C_ioa :: (action, nat)ioa
A_asig :: "action signature"
A_trans :: (action, bool)transition set
A_ioa :: (action, bool)ioa
h_abs :: "nat => bool"
defs
C_asig_def
"C_asig == ({},{INC},{})"
C_trans_def "C_trans ==
{tr. let s = fst(tr);
t = snd(snd(tr))
in case fst(snd(tr))
of
INC => t = Suc(s)}"
C_ioa_def "C_ioa ==
(C_asig, {0}, C_trans,{},{})"
A_asig_def
"A_asig == ({},{INC},{})"
A_trans_def "A_trans ==
{tr. let s = fst(tr);
t = snd(snd(tr))
in case fst(snd(tr))
of
INC => t = True}"
A_ioa_def "A_ioa ==
(A_asig, {False}, A_trans,{},{})"
h_abs_def
"h_abs n == n~=0"
rules
MC_result
"validIOA A_ioa (<>[] <%(b,a,c). b>)"
end