(* Title: HOLCF/IOA/meta_theory/Abstraction.thy
ID: $Id$
Author: Olaf M"uller
Copyright 1997 TU Muenchen
Abstraction Theory -- tailored for I/O automata
*)
Abstraction = LiveIOA +
default term
consts
cex_abs ::"('s1 => 's2) => ('a,'s1)execution => ('a,'s2)execution"
cex_absSeq ::"('s1 => 's2) => ('a option,'s1)transition Seq => ('a option,'s2)transition Seq"
is_abstraction ::"[('s1=>'s2),('a,'s1)ioa,('a,'s2)ioa] => bool"
weakeningIOA :: "('a,'s2)ioa => ('a,'s1)ioa => ('s1 => 's2) => bool"
temp_weakening :: "('a,'s2)ioa_temp => ('a,'s1)ioa_temp => ('s1 => 's2) => bool"
temp_strengthening :: "('a,'s2)ioa_temp => ('a,'s1)ioa_temp => ('s1 => 's2) => bool"
state_weakening :: "('a,'s2)step_pred => ('a,'s1)step_pred => ('s1 => 's2) => bool"
state_strengthening :: "('a,'s2)step_pred => ('a,'s1)step_pred => ('s1 => 's2) => bool"
is_live_abstraction :: "('s1 => 's2) => ('a,'s1)live_ioa => ('a,'s2)live_ioa => bool"
defs
is_abstraction_def
"is_abstraction f C A ==
(!s:starts_of(C). f(s):starts_of(A)) &
(!s t a. reachable C s & s -a--C-> t
--> (f s) -a--A-> (f t))"
is_live_abstraction_def
"is_live_abstraction h CL AM ==
is_abstraction h (fst CL) (fst AM) &
temp_weakening (snd AM) (snd CL) h"
cex_abs_def
"cex_abs f ex == (f (fst ex), Map (%(a,t). (a,f t))`(snd ex))"
(* equals cex_abs on Sequneces -- after ex2seq application -- *)
cex_absSeq_def
"cex_absSeq f == % s. Map (%(s,a,t). (f s,a,f t))`s"
weakeningIOA_def
"weakeningIOA A C h == ! ex. ex : executions C --> cex_abs h ex : executions A"
temp_weakening_def
"temp_weakening Q P h == temp_strengthening (.~ Q) (.~ P) h"
temp_strengthening_def
"temp_strengthening Q P h == ! ex. (cex_abs h ex |== Q) --> (ex |== P)"
state_weakening_def
"state_weakening Q P h == state_strengthening (.~Q) (.~P) h"
state_strengthening_def
"state_strengthening Q P h == ! s t a. Q (h(s),a,h(t)) --> P (s,a,t)"
rules
(* thm about ex2seq which is not provable by induction as ex2seq is not continous *)
ex2seq_abs_cex
"ex2seq (cex_abs h ex) = cex_absSeq h (ex2seq ex)"
(* analog to the proved thm strength_Box - proof skipped as trivial *)
weak_Box
"temp_weakening P Q h
==> temp_weakening ([] P) ([] Q) h"
(* analog to the proved thm strength_Next - proof skipped as trivial *)
weak_Next
"temp_weakening P Q h
==> temp_weakening (Next P) (Next Q) h"
end