| author | wenzelm |
| Tue, 01 May 2018 20:40:27 +0200 | |
| changeset 68061 | 81d90f830f99 |
| parent 61361 | 8b5f00202e1a |
| permissions | -rw-r--r-- |
(* Title: HOL/MicroJava/BV/Altern.thy Author: Martin Strecker *) section \<open>Alternative definition of well-typing of bytecode, used in compiler type correctness proof\<close> theory Altern imports BVSpec begin definition check_type :: "jvm_prog \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> JVMType.state \<Rightarrow> bool" where "check_type G mxs mxr s \<equiv> s \<in> states G mxs mxr" definition wt_instr_altern :: "[instr,jvm_prog,ty,method_type,nat,nat,p_count, exception_table,p_count] \<Rightarrow> bool" where "wt_instr_altern i G rT phi mxs mxr max_pc et pc \<equiv> app i G mxs rT pc et (phi!pc) \<and> check_type G mxs mxr (OK (phi!pc)) \<and> (\<forall>(pc',s') \<in> set (eff i G pc et (phi!pc)). pc' < max_pc \<and> G \<turnstile> s' <=' phi!pc')" definition wt_method_altern :: "[jvm_prog,cname,ty list,ty,nat,nat,instr list, exception_table,method_type] \<Rightarrow> bool" where "wt_method_altern G C pTs rT mxs mxl ins et phi \<equiv> let max_pc = length ins in 0 < max_pc \<and> length phi = length ins \<and> check_bounded ins et \<and> wt_start G C pTs mxl phi \<and> (\<forall>pc. pc<max_pc \<longrightarrow> wt_instr_altern (ins!pc) G rT phi mxs (1+length pTs+mxl) max_pc et pc)" lemma wt_method_wt_method_altern : "wt_method G C pTs rT mxs mxl ins et phi \<longrightarrow> wt_method_altern G C pTs rT mxs mxl ins et phi" apply (simp add: wt_method_def wt_method_altern_def) apply (intro strip) apply clarify apply (drule spec, drule mp, assumption) apply (simp add: check_types_def wt_instr_def wt_instr_altern_def check_type_def) apply (auto intro: imageI) done lemma check_type_check_types [rule_format]: "(\<forall>pc. pc < length phi \<longrightarrow> check_type G mxs mxr (OK (phi ! pc))) \<longrightarrow> check_types G mxs mxr (map OK phi)" apply (induct phi) apply (simp add: check_types_def) apply (simp add: check_types_def) apply clarify apply (frule_tac x=0 in spec) apply (simp add: check_type_def) apply auto done lemma wt_method_altern_wt_method [rule_format]: "wt_method_altern G C pTs rT mxs mxl ins et phi \<longrightarrow> wt_method G C pTs rT mxs mxl ins et phi" apply (simp add: wt_method_def wt_method_altern_def) apply (intro strip) apply clarify apply (rule conjI) (* show check_types *) apply (rule check_type_check_types) apply (simp add: wt_instr_altern_def) (* show wt_instr *) apply (intro strip) apply (drule spec, drule mp, assumption) apply (simp add: wt_instr_def wt_instr_altern_def) done end