| author | wenzelm |
| Tue, 01 May 2018 20:40:27 +0200 | |
| changeset 68061 | 81d90f830f99 |
| parent 67613 | ce654b0e6d69 |
| permissions | -rw-r--r-- |
(* Title: HOL/MicroJava/DFA/Opt.thy Author: Tobias Nipkow Copyright 2000 TUM *) section \<open>More about Options\<close> theory Opt imports Err begin definition le :: "'a ord \<Rightarrow> 'a option ord" where "le r o1 o2 == case o2 of None \<Rightarrow> o1=None | Some y \<Rightarrow> (case o1 of None \<Rightarrow> True | Some x \<Rightarrow> x <=_r y)" definition opt :: "'a set \<Rightarrow> 'a option set" where "opt A == insert None {x. \<exists>y\<in>A. x = Some y}" definition sup :: "'a ebinop \<Rightarrow> 'a option ebinop" where "sup f o1 o2 == case o1 of None \<Rightarrow> OK o2 | Some x \<Rightarrow> (case o2 of None \<Rightarrow> OK o1 | Some y \<Rightarrow> (case f x y of Err \<Rightarrow> Err | OK z \<Rightarrow> OK (Some z)))" definition esl :: "'a esl \<Rightarrow> 'a option esl" where "esl == %(A,r,f). (opt A, le r, sup f)" lemma unfold_le_opt: "o1 <=_(le r) o2 = (case o2 of None \<Rightarrow> o1=None | Some y \<Rightarrow> (case o1 of None \<Rightarrow> True | Some x \<Rightarrow> x <=_r y))" apply (unfold lesub_def le_def) apply (rule refl) done lemma le_opt_refl: "order r \<Longrightarrow> o1 <=_(le r) o1" by (simp add: unfold_le_opt split: option.split) lemma le_opt_trans [rule_format]: "order r \<Longrightarrow> o1 <=_(le r) o2 \<longrightarrow> o2 <=_(le r) o3 \<longrightarrow> o1 <=_(le r) o3" apply (simp add: unfold_le_opt split: option.split) apply (blast intro: order_trans) done lemma le_opt_antisym [rule_format]: "order r \<Longrightarrow> o1 <=_(le r) o2 \<longrightarrow> o2 <=_(le r) o1 \<longrightarrow> o1=o2" apply (simp add: unfold_le_opt split: option.split) apply (blast intro: order_antisym) done lemma order_le_opt [intro!,simp]: "order r \<Longrightarrow> order(le r)" apply (subst Semilat.order_def) apply (blast intro: le_opt_refl le_opt_trans le_opt_antisym) done lemma None_bot [iff]: "None <=_(le r) ox" apply (unfold lesub_def le_def) apply (simp split: option.split) done lemma Some_le [iff]: "(Some x <=_(le r) ox) = (\<exists>y. ox = Some y \<and> x <=_r y)" apply (unfold lesub_def le_def) apply (simp split: option.split) done lemma le_None [iff]: "(ox <=_(le r) None) = (ox = None)" apply (unfold lesub_def le_def) apply (simp split: option.split) done lemma OK_None_bot [iff]: "OK None <=_(Err.le (le r)) x" by (simp add: lesub_def Err.le_def le_def split: option.split err.split) lemma sup_None1 [iff]: "x +_(sup f) None = OK x" by (simp add: plussub_def sup_def split: option.split) lemma sup_None2 [iff]: "None +_(sup f) x = OK x" by (simp add: plussub_def sup_def split: option.split) lemma None_in_opt [iff]: "None \<in> opt A" by (simp add: opt_def) lemma Some_in_opt [iff]: "(Some x \<in> opt A) = (x\<in>A)" apply (unfold opt_def) apply auto done lemma semilat_opt [intro, simp]: "\<And>L. err_semilat L \<Longrightarrow> err_semilat (Opt.esl L)" proof (unfold Opt.esl_def Err.sl_def, simp add: split_tupled_all) fix A r f assume s: "semilat (err A, Err.le r, lift2 f)" let ?A0 = "err A" let ?r0 = "Err.le r" let ?f0 = "lift2 f" from s obtain ord: "order ?r0" and clo: "closed ?A0 ?f0" and ub1: "\<forall>x\<in>?A0. \<forall>y\<in>?A0. x <=_?r0 x +_?f0 y" and ub2: "\<forall>x\<in>?A0. \<forall>y\<in>?A0. y <=_?r0 x +_?f0 y" and lub: "\<forall>x\<in>?A0. \<forall>y\<in>?A0. \<forall>z\<in>?A0. x <=_?r0 z \<and> y <=_?r0 z \<longrightarrow> x +_?f0 y <=_?r0 z" by (unfold semilat_def) simp let ?A = "err (opt A)" let ?r = "Err.le (Opt.le r)" let ?f = "lift2 (Opt.sup f)" from ord have "order ?r" by simp moreover have "closed ?A ?f" proof (unfold closed_def, intro strip) fix x y assume x: "x \<in> ?A" assume y: "y \<in> ?A" { fix a b assume ab: "x = OK a" "y = OK b" with x have a: "\<And>c. a = Some c \<Longrightarrow> c \<in> A" by (clarsimp simp add: opt_def) from ab y have b: "\<And>d. b = Some d \<Longrightarrow> d \<in> A" by (clarsimp simp add: opt_def) { fix c d assume "a = Some c" "b = Some d" with ab x y have "c \<in> A \<and> d \<in> A" by (simp add: err_def opt_def Bex_def) with clo have "f c d \<in> err A" by (simp add: closed_def plussub_def err_def lift2_def) moreover fix z assume "f c d = OK z" ultimately have "z \<in> A" by simp } note f_closed = this have "sup f a b \<in> ?A" proof (cases a) case None thus ?thesis by (simp add: sup_def opt_def) (cases b, simp, simp add: b Bex_def) next case Some thus ?thesis by (auto simp add: sup_def opt_def Bex_def a b f_closed split: err.split option.split) qed } thus "x +_?f y \<in> ?A" by (simp add: plussub_def lift2_def split: err.split) qed moreover { fix a b c assume "a \<in> opt A" "b \<in> opt A" "a +_(sup f) b = OK c" moreover from ord have "order r" by simp moreover { fix x y z assume "x \<in> A" "y \<in> A" hence "OK x \<in> err A \<and> OK y \<in> err A" by simp with ub1 ub2 have "(OK x) <=_(Err.le r) (OK x) +_(lift2 f) (OK y) \<and> (OK y) <=_(Err.le r) (OK x) +_(lift2 f) (OK y)" by blast moreover assume "x +_f y = OK z" ultimately have "x <=_r z \<and> y <=_r z" by (auto simp add: plussub_def lift2_def Err.le_def lesub_def) } ultimately have "a <=_(le r) c \<and> b <=_(le r) c" by (auto simp add: sup_def le_def lesub_def plussub_def dest: order_refl split: option.splits err.splits) } hence "(\<forall>x\<in>?A. \<forall>y\<in>?A. x <=_?r x +_?f y) \<and> (\<forall>x\<in>?A. \<forall>y\<in>?A. y <=_?r x +_?f y)" by (auto simp add: lesub_def plussub_def Err.le_def lift2_def split: err.split) moreover have "\<forall>x\<in>?A. \<forall>y\<in>?A. \<forall>z\<in>?A. x <=_?r z \<and> y <=_?r z \<longrightarrow> x +_?f y <=_?r z" proof (intro strip, elim conjE) fix x y z assume xyz: "x \<in> ?A" "y \<in> ?A" "z \<in> ?A" assume xz: "x <=_?r z" assume yz: "y <=_?r z" { fix a b c assume ok: "x = OK a" "y = OK b" "z = OK c" { fix d e g assume some: "a = Some d" "b = Some e" "c = Some g" with ok xyz obtain "OK d \<in> err A" "OK e \<in> err A" "OK g \<in> err A" by simp with lub have "\<lbrakk> (OK d) <=_(Err.le r) (OK g); (OK e) <=_(Err.le r) (OK g) \<rbrakk> \<Longrightarrow> (OK d) +_(lift2 f) (OK e) <=_(Err.le r) (OK g)" by blast hence "\<lbrakk> d <=_r g; e <=_r g \<rbrakk> \<Longrightarrow> \<exists>y. d +_f e = OK y \<and> y <=_r g" by simp with ok some xyz xz yz have "x +_?f y <=_?r z" by (auto simp add: sup_def le_def lesub_def lift2_def plussub_def Err.le_def) } note this [intro!] from ok xyz xz yz have "x +_?f y <=_?r z" by - (cases a, simp, cases b, simp, cases c, simp, blast) } with xyz xz yz show "x +_?f y <=_?r z" by - (cases x, simp, cases y, simp, cases z, simp+) qed ultimately show "semilat (?A,?r,?f)" by (unfold semilat_def) simp qed lemma top_le_opt_Some [iff]: "top (le r) (Some T) = top r T" apply (unfold top_def) apply (rule iffI) apply blast apply (rule allI) apply (case_tac "x") apply simp+ done lemma Top_le_conv: "\<lbrakk> order r; top r T \<rbrakk> \<Longrightarrow> (T <=_r x) = (x = T)" apply (unfold top_def) apply (blast intro: order_antisym) done lemma acc_le_optI [intro!]: "acc r \<Longrightarrow> acc(le r)" apply (unfold acc_def lesub_def le_def lesssub_def) apply (simp add: wf_eq_minimal split: option.split) apply clarify apply (case_tac "\<exists>a. Some a \<in> Q") apply (erule_tac x = "{a. Some a \<in> Q}" in allE) apply blast apply (case_tac "x") apply blast apply blast done lemma option_map_in_optionI: "\<lbrakk> ox \<in> opt S; \<forall>x\<in>S. ox = Some x \<longrightarrow> f x \<in> S \<rbrakk> \<Longrightarrow> map_option f ox \<in> opt S" apply (unfold map_option_case) apply (simp split: option.split) apply blast done end