Added Krzysztof's theorem LeastI2.  Proof of sum_eqpoll_cong
uses lemma sum_bij; proof of prod_eqpoll_cong uses lemma prod_bij.
(*  Title: 	HOLCF/lift3.thy
    ID:         $Id$
    Author: 	Franz Regensburger
    Copyright   1993 Technische Universitaet Muenchen
Class instance of  ('a)u for class pcpo
*)
Lift3 = Lift2 +
arities "u" :: (pcpo)pcpo			(* Witness lift2.ML *)
consts  
	up	     :: "'a -> ('a)u" 
	lift         :: "('a->'c)-> ('a)u -> 'c"
rules 
inst_lift_pcpo	"(UU::('a)u) = UU_lift"
up_def		"up     == (LAM x.Iup(x))"
lift_def	"lift   == (LAM f p.Ilift(f)(p))"
end