(* Title: Pure/ML/ml_antiquotations.ML
Author: Makarius
Miscellaneous ML antiquotations.
*)
structure ML_Antiquotations: sig end =
struct
(* ML support *)
val _ = Theory.setup
(ML_Antiquotation.inline @{binding assert}
(Scan.succeed "(fn b => if b then () else raise General.Fail \"Assertion failed\")") #>
ML_Antiquotation.inline @{binding make_string}
(Args.context >> (ml_make_string o ML_Context.struct_name)) #>
ML_Antiquotation.declaration @{binding print}
(Scan.lift (Scan.optional Args.name "Output.writeln"))
(fn src => fn output => fn ctxt =>
let
val struct_name = ML_Context.struct_name ctxt;
val (_, pos) = Token.name_of_src src;
val (a, ctxt') = ML_Context.variant "output" ctxt;
val env =
"val " ^ a ^ ": string -> unit =\n\
\ (" ^ output ^ ") o (fn s => s ^ Position.here (" ^
ML_Syntax.print_position pos ^ "));\n";
val body =
"(fn x => (" ^ struct_name ^ "." ^ a ^ " (" ^ ml_make_string struct_name ^ " x); x))";
in (K (env, body), ctxt') end));
(* formal entities *)
val _ = Theory.setup
(ML_Antiquotation.value @{binding system_option}
(Args.context -- Scan.lift (Parse.position Args.name) >> (fn (ctxt, (name, pos)) =>
let
val markup =
Options.default_markup (name, pos) handle ERROR msg =>
let
val completion =
Completion.make (name, pos) (fn completed =>
Options.names (Options.default ())
|> filter completed
|> map (fn a => (a, ("system_option", a))));
val report = Markup.markup_report (Completion.reported_text completion);
in error (msg ^ report) end;
val _ = Context_Position.report ctxt pos markup;
in ML_Syntax.print_string name end)) #>
ML_Antiquotation.value @{binding theory}
(Args.context -- Scan.lift (Parse.position Args.name) >> (fn (ctxt, (name, pos)) =>
(Theory.check ctxt (name, pos);
"Context.get_theory (Proof_Context.theory_of ML_context) " ^ ML_Syntax.print_string name))
|| Scan.succeed "Proof_Context.theory_of ML_context") #>
ML_Antiquotation.value @{binding theory_context}
(Args.context -- Scan.lift (Parse.position Args.name) >> (fn (ctxt, (name, pos)) =>
(Theory.check ctxt (name, pos);
"Proof_Context.get_global (Proof_Context.theory_of ML_context) " ^
ML_Syntax.print_string name))) #>
ML_Antiquotation.inline @{binding context}
(Args.context >> (fn ctxt => ML_Context.struct_name ctxt ^ ".ML_context")) #>
ML_Antiquotation.inline @{binding typ} (Args.typ >> (ML_Syntax.atomic o ML_Syntax.print_typ)) #>
ML_Antiquotation.inline @{binding term} (Args.term >> (ML_Syntax.atomic o ML_Syntax.print_term)) #>
ML_Antiquotation.inline @{binding prop} (Args.prop >> (ML_Syntax.atomic o ML_Syntax.print_term)) #>
ML_Antiquotation.value @{binding ctyp} (Args.typ >> (fn T =>
"Thm.ctyp_of ML_context " ^ ML_Syntax.atomic (ML_Syntax.print_typ T))) #>
ML_Antiquotation.value @{binding cterm} (Args.term >> (fn t =>
"Thm.cterm_of ML_context " ^ ML_Syntax.atomic (ML_Syntax.print_term t))) #>
ML_Antiquotation.value @{binding cprop} (Args.prop >> (fn t =>
"Thm.cterm_of ML_context " ^ ML_Syntax.atomic (ML_Syntax.print_term t))));
(* type classes *)
fun class syn = Args.context -- Scan.lift Args.name_inner_syntax >> (fn (ctxt, s) =>
Proof_Context.read_class ctxt s
|> syn ? Lexicon.mark_class
|> ML_Syntax.print_string);
val _ = Theory.setup
(ML_Antiquotation.inline @{binding class} (class false) #>
ML_Antiquotation.inline @{binding class_syntax} (class true) #>
ML_Antiquotation.inline @{binding sort}
(Args.context -- Scan.lift Args.name_inner_syntax >> (fn (ctxt, s) =>
ML_Syntax.atomic (ML_Syntax.print_sort (Syntax.read_sort ctxt s)))));
(* type constructors *)
fun type_name kind check = Args.context -- Scan.lift (Parse.position Args.name_inner_syntax)
>> (fn (ctxt, (s, pos)) =>
let
val Type (c, _) = Proof_Context.read_type_name {proper = true, strict = false} ctxt s;
val decl = Type.the_decl (Proof_Context.tsig_of ctxt) (c, pos);
val res =
(case try check (c, decl) of
SOME res => res
| NONE => error ("Not a " ^ kind ^ ": " ^ quote c ^ Position.here pos));
in ML_Syntax.print_string res end);
val _ = Theory.setup
(ML_Antiquotation.inline @{binding type_name}
(type_name "logical type" (fn (c, Type.LogicalType _) => c)) #>
ML_Antiquotation.inline @{binding type_abbrev}
(type_name "type abbreviation" (fn (c, Type.Abbreviation _) => c)) #>
ML_Antiquotation.inline @{binding nonterminal}
(type_name "nonterminal" (fn (c, Type.Nonterminal) => c)) #>
ML_Antiquotation.inline @{binding type_syntax}
(type_name "type" (fn (c, _) => Lexicon.mark_type c)));
(* constants *)
fun const_name check = Args.context -- Scan.lift (Parse.position Args.name_inner_syntax)
>> (fn (ctxt, (s, pos)) =>
let
val Const (c, _) = Proof_Context.read_const {proper = true, strict = false} ctxt s;
val res = check (Proof_Context.consts_of ctxt, c)
handle TYPE (msg, _, _) => error (msg ^ Position.here pos);
in ML_Syntax.print_string res end);
val _ = Theory.setup
(ML_Antiquotation.inline @{binding const_name}
(const_name (fn (consts, c) => (Consts.the_const consts c; c))) #>
ML_Antiquotation.inline @{binding const_abbrev}
(const_name (fn (consts, c) => (Consts.the_abbreviation consts c; c))) #>
ML_Antiquotation.inline @{binding const_syntax}
(const_name (fn (_, c) => Lexicon.mark_const c)) #>
ML_Antiquotation.inline @{binding syntax_const}
(Args.context -- Scan.lift (Parse.position Args.name) >> (fn (ctxt, (c, pos)) =>
if is_some (Syntax.lookup_const (Proof_Context.syn_of ctxt) c)
then ML_Syntax.print_string c
else error ("Unknown syntax const: " ^ quote c ^ Position.here pos))) #>
ML_Antiquotation.inline @{binding const}
(Args.context -- Scan.lift (Parse.position Args.name_inner_syntax) -- Scan.optional
(Scan.lift (Args.$$$ "(") |-- Parse.enum1' "," Args.typ --| Scan.lift (Args.$$$ ")")) []
>> (fn ((ctxt, (raw_c, pos)), Ts) =>
let
val Const (c, _) =
Proof_Context.read_const {proper = true, strict = true} ctxt raw_c;
val consts = Proof_Context.consts_of ctxt;
val n = length (Consts.typargs consts (c, Consts.type_scheme consts c));
val _ = length Ts <> n andalso
error ("Constant requires " ^ string_of_int n ^ " type argument(s): " ^
quote c ^ enclose "(" ")" (commas (replicate n "_")) ^ Position.here pos);
val const = Const (c, Consts.instance consts (c, Ts));
in ML_Syntax.atomic (ML_Syntax.print_term const) end)));
(* basic combinators *)
local
val parameter = Parse.position Parse.nat >> (fn (n, pos) =>
if n > 1 then n else error ("Bad parameter: " ^ string_of_int n ^ Position.here pos));
fun indices n = map string_of_int (1 upto n);
fun empty n = replicate_string n " []";
fun dummy n = replicate_string n " _";
fun vars x n = implode (map (fn a => " " ^ x ^ a) (indices n));
fun cons n = implode (map (fn a => " (x" ^ a ^ " :: xs" ^ a ^ ")") (indices n));
val tuple = enclose "(" ")" o commas;
fun tuple_empty n = tuple (replicate n "[]");
fun tuple_vars x n = tuple (map (fn a => x ^ a) (indices n));
fun tuple_cons n = "(" ^ tuple_vars "x" n ^ " :: xs)"
fun cons_tuple n = tuple (map (fn a => "x" ^ a ^ " :: xs" ^ a) (indices n));
in
val _ = Theory.setup
(ML_Antiquotation.value @{binding map}
(Scan.lift parameter >> (fn n =>
"fn f =>\n\
\ let\n\
\ fun map _" ^ empty n ^ " = []\n\
\ | map f" ^ cons n ^ " = f" ^ vars "x" n ^ " :: map f" ^ vars "xs" n ^ "\n\
\ | map _" ^ dummy n ^ " = raise ListPair.UnequalLengths\n" ^
" in map f end")) #>
ML_Antiquotation.value @{binding fold}
(Scan.lift parameter >> (fn n =>
"fn f =>\n\
\ let\n\
\ fun fold _" ^ empty n ^ " a = a\n\
\ | fold f" ^ cons n ^ " a = fold f" ^ vars "xs" n ^ " (f" ^ vars "x" n ^ " a)\n\
\ | fold _" ^ dummy n ^ " _ = raise ListPair.UnequalLengths\n" ^
" in fold f end")) #>
ML_Antiquotation.value @{binding fold_map}
(Scan.lift parameter >> (fn n =>
"fn f =>\n\
\ let\n\
\ fun fold_map _" ^ empty n ^ " a = ([], a)\n\
\ | fold_map f" ^ cons n ^ " a =\n\
\ let\n\
\ val (x, a') = f" ^ vars "x" n ^ " a\n\
\ val (xs, a'') = fold_map f" ^ vars "xs" n ^ " a'\n\
\ in (x :: xs, a'') end\n\
\ | fold_map _" ^ dummy n ^ " _ = raise ListPair.UnequalLengths\n" ^
" in fold_map f end")) #>
ML_Antiquotation.value @{binding split_list}
(Scan.lift parameter >> (fn n =>
"fn list =>\n\
\ let\n\
\ fun split_list [] =" ^ tuple_empty n ^ "\n\
\ | split_list" ^ tuple_cons n ^ " =\n\
\ let val" ^ tuple_vars "xs" n ^ " = split_list xs\n\
\ in " ^ cons_tuple n ^ "end\n\
\ in split_list list end")) #>
ML_Antiquotation.value @{binding apply}
(Scan.lift (parameter -- Scan.option (Args.parens (Parse.position Parse.nat))) >>
(fn (n, opt_index) =>
let
val cond =
(case opt_index of
NONE => K true
| SOME (index, index_pos) =>
if 1 <= index andalso index <= n then equal (string_of_int index)
else error ("Bad index: " ^ string_of_int index ^ Position.here index_pos));
in
"fn f => fn " ^ tuple_vars "x" n ^ " => " ^
tuple (map (fn a => (if cond a then "f x" else "x") ^ a) (indices n))
end)));
end;
(* outer syntax *)
val _ = Theory.setup
(ML_Antiquotation.value @{binding keyword}
(Args.theory -- Scan.lift (Parse.position Parse.string) >> (fn (thy, (name, pos)) =>
if Keyword.is_keyword (Thy_Header.get_keywords thy) name then
"Parse.$$$ " ^ ML_Syntax.print_string name
else error ("Bad outer syntax keyword " ^ quote name ^ Position.here pos))) #>
ML_Antiquotation.value @{binding command_keyword}
(Args.context -- Scan.lift (Parse.position Parse.name) >> (fn (ctxt, (name, pos)) =>
(case Keyword.command_markup (Thy_Header.get_keywords' ctxt) name of
SOME markup =>
(Context_Position.reports ctxt [(pos, markup), (pos, Markup.keyword1)];
ML_Syntax.print_pair ML_Syntax.print_string ML_Syntax.print_position (name, pos))
| NONE => error ("Bad outer syntax command " ^ quote name ^ Position.here pos)))));
end;