(* Title: HOL/Library/Quotient_Product.thy
Author: Cezary Kaliszyk, Christian Urban and Brian Huffman
*)
header {* Quotient infrastructure for the product type *}
theory Quotient_Product
imports Main Quotient_Syntax
begin
subsection {* Relator for product type *}
definition
prod_rel :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> 'a \<times> 'c \<Rightarrow> 'b \<times> 'd \<Rightarrow> bool"
where
"prod_rel R1 R2 = (\<lambda>(a, b) (c, d). R1 a c \<and> R2 b d)"
definition prod_pred :: "('a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> 'a \<times> 'b \<Rightarrow> bool"
where "prod_pred R1 R2 = (\<lambda>(a, b). R1 a \<and> R2 b)"
lemma prod_rel_apply [simp]:
"prod_rel R1 R2 (a, b) (c, d) \<longleftrightarrow> R1 a c \<and> R2 b d"
by (simp add: prod_rel_def)
lemma prod_pred_apply [simp]:
"prod_pred P1 P2 (a, b) \<longleftrightarrow> P1 a \<and> P2 b"
by (simp add: prod_pred_def)
lemma map_pair_id [id_simps]:
shows "map_pair id id = id"
by (simp add: fun_eq_iff)
lemma prod_rel_eq [id_simps, relator_eq]:
shows "prod_rel (op =) (op =) = (op =)"
by (simp add: fun_eq_iff)
lemma prod_rel_mono[relator_mono]:
assumes "A \<le> C"
assumes "B \<le> D"
shows "(prod_rel A B) \<le> (prod_rel C D)"
using assms by (auto simp: prod_rel_def)
lemma prod_rel_OO[relator_distr]:
"(prod_rel A B) OO (prod_rel C D) = prod_rel (A OO C) (B OO D)"
by (rule ext)+ (auto simp: prod_rel_def OO_def)
lemma Domainp_prod[relator_domain]:
assumes "Domainp T1 = P1"
assumes "Domainp T2 = P2"
shows "Domainp (prod_rel T1 T2) = (prod_pred P1 P2)"
using assms unfolding prod_rel_def prod_pred_def by blast
lemma reflp_prod_rel [reflexivity_rule]:
assumes "reflp R1"
assumes "reflp R2"
shows "reflp (prod_rel R1 R2)"
using assms by (auto intro!: reflpI elim: reflpE)
lemma left_total_prod_rel [reflexivity_rule]:
assumes "left_total R1"
assumes "left_total R2"
shows "left_total (prod_rel R1 R2)"
using assms unfolding left_total_def prod_rel_def by auto
lemma left_unique_prod_rel [reflexivity_rule]:
assumes "left_unique R1" and "left_unique R2"
shows "left_unique (prod_rel R1 R2)"
using assms unfolding left_unique_def prod_rel_def by auto
lemma prod_equivp [quot_equiv]:
assumes "equivp R1"
assumes "equivp R2"
shows "equivp (prod_rel R1 R2)"
using assms by (auto intro!: equivpI reflpI sympI transpI elim!: equivpE elim: reflpE sympE transpE)
lemma right_total_prod_rel [transfer_rule]:
assumes "right_total R1" and "right_total R2"
shows "right_total (prod_rel R1 R2)"
using assms unfolding right_total_def prod_rel_def by auto
lemma right_unique_prod_rel [transfer_rule]:
assumes "right_unique R1" and "right_unique R2"
shows "right_unique (prod_rel R1 R2)"
using assms unfolding right_unique_def prod_rel_def by auto
lemma bi_total_prod_rel [transfer_rule]:
assumes "bi_total R1" and "bi_total R2"
shows "bi_total (prod_rel R1 R2)"
using assms unfolding bi_total_def prod_rel_def by auto
lemma bi_unique_prod_rel [transfer_rule]:
assumes "bi_unique R1" and "bi_unique R2"
shows "bi_unique (prod_rel R1 R2)"
using assms unfolding bi_unique_def prod_rel_def by auto
subsection {* Transfer rules for transfer package *}
lemma Pair_transfer [transfer_rule]: "(A ===> B ===> prod_rel A B) Pair Pair"
unfolding fun_rel_def prod_rel_def by simp
lemma fst_transfer [transfer_rule]: "(prod_rel A B ===> A) fst fst"
unfolding fun_rel_def prod_rel_def by simp
lemma snd_transfer [transfer_rule]: "(prod_rel A B ===> B) snd snd"
unfolding fun_rel_def prod_rel_def by simp
lemma prod_case_transfer [transfer_rule]:
"((A ===> B ===> C) ===> prod_rel A B ===> C) prod_case prod_case"
unfolding fun_rel_def prod_rel_def by simp
lemma curry_transfer [transfer_rule]:
"((prod_rel A B ===> C) ===> A ===> B ===> C) curry curry"
unfolding curry_def by transfer_prover
lemma map_pair_transfer [transfer_rule]:
"((A ===> C) ===> (B ===> D) ===> prod_rel A B ===> prod_rel C D)
map_pair map_pair"
unfolding map_pair_def [abs_def] by transfer_prover
lemma prod_rel_transfer [transfer_rule]:
"((A ===> B ===> op =) ===> (C ===> D ===> op =) ===>
prod_rel A C ===> prod_rel B D ===> op =) prod_rel prod_rel"
unfolding fun_rel_def by auto
subsection {* Setup for lifting package *}
lemma Quotient_prod[quot_map]:
assumes "Quotient R1 Abs1 Rep1 T1"
assumes "Quotient R2 Abs2 Rep2 T2"
shows "Quotient (prod_rel R1 R2) (map_pair Abs1 Abs2)
(map_pair Rep1 Rep2) (prod_rel T1 T2)"
using assms unfolding Quotient_alt_def by auto
lemma prod_invariant_commute [invariant_commute]:
"prod_rel (Lifting.invariant P1) (Lifting.invariant P2) = Lifting.invariant (prod_pred P1 P2)"
apply (simp add: fun_eq_iff prod_rel_def prod_pred_def Lifting.invariant_def)
apply blast
done
subsection {* Rules for quotient package *}
lemma prod_quotient [quot_thm]:
assumes "Quotient3 R1 Abs1 Rep1"
assumes "Quotient3 R2 Abs2 Rep2"
shows "Quotient3 (prod_rel R1 R2) (map_pair Abs1 Abs2) (map_pair Rep1 Rep2)"
apply (rule Quotient3I)
apply (simp add: map_pair.compositionality comp_def map_pair.identity
Quotient3_abs_rep [OF assms(1)] Quotient3_abs_rep [OF assms(2)])
apply (simp add: split_paired_all Quotient3_rel_rep [OF assms(1)] Quotient3_rel_rep [OF assms(2)])
using Quotient3_rel [OF assms(1)] Quotient3_rel [OF assms(2)]
apply (auto simp add: split_paired_all)
done
declare [[mapQ3 prod = (prod_rel, prod_quotient)]]
lemma Pair_rsp [quot_respect]:
assumes q1: "Quotient3 R1 Abs1 Rep1"
assumes q2: "Quotient3 R2 Abs2 Rep2"
shows "(R1 ===> R2 ===> prod_rel R1 R2) Pair Pair"
by (rule Pair_transfer)
lemma Pair_prs [quot_preserve]:
assumes q1: "Quotient3 R1 Abs1 Rep1"
assumes q2: "Quotient3 R2 Abs2 Rep2"
shows "(Rep1 ---> Rep2 ---> (map_pair Abs1 Abs2)) Pair = Pair"
apply(simp add: fun_eq_iff)
apply(simp add: Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2])
done
lemma fst_rsp [quot_respect]:
assumes "Quotient3 R1 Abs1 Rep1"
assumes "Quotient3 R2 Abs2 Rep2"
shows "(prod_rel R1 R2 ===> R1) fst fst"
by auto
lemma fst_prs [quot_preserve]:
assumes q1: "Quotient3 R1 Abs1 Rep1"
assumes q2: "Quotient3 R2 Abs2 Rep2"
shows "(map_pair Rep1 Rep2 ---> Abs1) fst = fst"
by (simp add: fun_eq_iff Quotient3_abs_rep[OF q1])
lemma snd_rsp [quot_respect]:
assumes "Quotient3 R1 Abs1 Rep1"
assumes "Quotient3 R2 Abs2 Rep2"
shows "(prod_rel R1 R2 ===> R2) snd snd"
by auto
lemma snd_prs [quot_preserve]:
assumes q1: "Quotient3 R1 Abs1 Rep1"
assumes q2: "Quotient3 R2 Abs2 Rep2"
shows "(map_pair Rep1 Rep2 ---> Abs2) snd = snd"
by (simp add: fun_eq_iff Quotient3_abs_rep[OF q2])
lemma split_rsp [quot_respect]:
shows "((R1 ===> R2 ===> (op =)) ===> (prod_rel R1 R2) ===> (op =)) split split"
by (rule prod_case_transfer)
lemma split_prs [quot_preserve]:
assumes q1: "Quotient3 R1 Abs1 Rep1"
and q2: "Quotient3 R2 Abs2 Rep2"
shows "(((Abs1 ---> Abs2 ---> id) ---> map_pair Rep1 Rep2 ---> id) split) = split"
by (simp add: fun_eq_iff Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2])
lemma [quot_respect]:
shows "((R2 ===> R2 ===> op =) ===> (R1 ===> R1 ===> op =) ===>
prod_rel R2 R1 ===> prod_rel R2 R1 ===> op =) prod_rel prod_rel"
by (rule prod_rel_transfer)
lemma [quot_preserve]:
assumes q1: "Quotient3 R1 abs1 rep1"
and q2: "Quotient3 R2 abs2 rep2"
shows "((abs1 ---> abs1 ---> id) ---> (abs2 ---> abs2 ---> id) --->
map_pair rep1 rep2 ---> map_pair rep1 rep2 ---> id) prod_rel = prod_rel"
by (simp add: fun_eq_iff Quotient3_abs_rep[OF q1] Quotient3_abs_rep[OF q2])
lemma [quot_preserve]:
shows"(prod_rel ((rep1 ---> rep1 ---> id) R1) ((rep2 ---> rep2 ---> id) R2)
(l1, l2) (r1, r2)) = (R1 (rep1 l1) (rep1 r1) \<and> R2 (rep2 l2) (rep2 r2))"
by simp
declare Pair_eq[quot_preserve]
end