(* Title: ZF/Induct/Brouwer.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
*)
section \<open>Infinite branching datatype definitions\<close>
theory Brouwer imports ZFC begin
subsection \<open>The Brouwer ordinals\<close>
consts
brouwer :: i
datatype \<subseteq> "Vfrom(0, csucc(nat))"
"brouwer" = Zero | Suc ("b \<in> brouwer") | Lim ("h \<in> nat -> brouwer")
monos Pi_mono
type_intros inf_datatype_intros
lemma brouwer_unfold: "brouwer = {0} + brouwer + (nat -> brouwer)"
by (fast intro!: brouwer.intros [unfolded brouwer.con_defs]
elim: brouwer.cases [unfolded brouwer.con_defs])
lemma brouwer_induct2 [consumes 1, case_names Zero Suc Lim]:
assumes b: "b \<in> brouwer"
and cases:
"P(Zero)"
"!!b. [| b \<in> brouwer; P(b) |] ==> P(Suc(b))"
"!!h. [| h \<in> nat -> brouwer; \<forall>i \<in> nat. P(h`i) |] ==> P(Lim(h))"
shows "P(b)"
\<comment> \<open>A nicer induction rule than the standard one.\<close>
using b
apply induct
apply (rule cases(1))
apply (erule (1) cases(2))
apply (rule cases(3))
apply (fast elim: fun_weaken_type)
apply (fast dest: apply_type)
done
subsection \<open>The Martin-Löf wellordering type\<close>
consts
Well :: "[i, i => i] => i"
datatype \<subseteq> "Vfrom(A \<union> (\<Union>x \<in> A. B(x)), csucc(nat \<union> |\<Union>x \<in> A. B(x)|))"
\<comment> \<open>The union with \<open>nat\<close> ensures that the cardinal is infinite.\<close>
"Well(A, B)" = Sup ("a \<in> A", "f \<in> B(a) -> Well(A, B)")
monos Pi_mono
type_intros le_trans [OF UN_upper_cardinal le_nat_Un_cardinal] inf_datatype_intros
lemma Well_unfold: "Well(A, B) = (\<Sum>x \<in> A. B(x) -> Well(A, B))"
by (fast intro!: Well.intros [unfolded Well.con_defs]
elim: Well.cases [unfolded Well.con_defs])
lemma Well_induct2 [consumes 1, case_names step]:
assumes w: "w \<in> Well(A, B)"
and step: "!!a f. [| a \<in> A; f \<in> B(a) -> Well(A,B); \<forall>y \<in> B(a). P(f`y) |] ==> P(Sup(a,f))"
shows "P(w)"
\<comment> \<open>A nicer induction rule than the standard one.\<close>
using w
apply induct
apply (assumption | rule step)+
apply (fast elim: fun_weaken_type)
apply (fast dest: apply_type)
done
lemma Well_bool_unfold: "Well(bool, \<lambda>x. x) = 1 + (1 -> Well(bool, \<lambda>x. x))"
\<comment> \<open>In fact it's isomorphic to \<open>nat\<close>, but we need a recursion operator\<close>
\<comment> \<open>for \<open>Well\<close> to prove this.\<close>
apply (rule Well_unfold [THEN trans])
apply (simp add: Sigma_bool succ_def)
done
end