src/FOL/ex/nat2.ML
author paulson
Mon, 27 Oct 1997 10:34:17 +0100
changeset 4006 84a5efc95dcf
parent 0 a5a9c433f639
permissions -rw-r--r--
Deleted two needless theorems

(*  Title: 	FOL/ex/nat2.ML
    ID:         $Id$
    Author: 	Tobias Nipkow
    Copyright   1991  University of Cambridge

For ex/nat.thy.  
Examples of simplification and induction on the natural numbers
*)

open Nat2;

val nat_rews = [pred_0, pred_succ, plus_0, plus_succ, 
		    nat_distinct1, nat_distinct2, succ_inject,
		    leq_0,leq_succ_succ,leq_succ_0, 
		    lt_0_succ,lt_succ_succ,lt_0];

val nat_ss = FOL_ss addsimps nat_rews;

val prems = goal Nat2.thy 
    "[| P(0);  !!x. P(succ(x)) |] ==> All(P)";
by (rtac nat_ind 1);
by (REPEAT (resolve_tac (prems@[allI,impI]) 1));
val nat_exh = result();

goal Nat2.thy "~ n=succ(n)";
by (IND_TAC nat_ind (simp_tac nat_ss) "n" 1);
result();

goal Nat2.thy "~ succ(n)=n";
by (IND_TAC nat_ind (simp_tac nat_ss) "n" 1);
result();

goal Nat2.thy "~ succ(succ(n))=n";
by (IND_TAC nat_ind (simp_tac nat_ss) "n" 1);
result();

goal Nat2.thy "~ n=succ(succ(n))";
by (IND_TAC nat_ind (simp_tac nat_ss) "n" 1);
result();

goal Nat2.thy "m+0 = m";
by (IND_TAC nat_ind (simp_tac nat_ss) "m" 1);
val plus_0_right = result();

goal Nat2.thy "m+succ(n) = succ(m+n)";
by (IND_TAC nat_ind (simp_tac nat_ss) "m" 1);
val plus_succ_right = result();

goal Nat2.thy "~n=0 --> m+pred(n) = pred(m+n)";
by (IND_TAC nat_ind (simp_tac (nat_ss addsimps [plus_succ_right])) "n" 1);
result();

goal Nat2.thy "~n=0 --> succ(pred(n))=n";
by (IND_TAC nat_ind (simp_tac nat_ss) "n" 1);
result();

goal Nat2.thy "m+n=0 <-> m=0 & n=0";
by (IND_TAC nat_ind (simp_tac nat_ss) "m" 1);
result();

goal Nat2.thy "m <= n --> m <= succ(n)";
by (IND_TAC nat_ind (simp_tac nat_ss) "m" 1);
by (rtac (impI RS allI) 1);
by (ALL_IND_TAC nat_ind (simp_tac nat_ss) 1);
by (fast_tac FOL_cs 1);
val le_imp_le_succ = result() RS mp;

goal Nat2.thy "n<succ(n)";
by (IND_TAC nat_ind (simp_tac nat_ss) "n" 1);
result();

goal Nat2.thy "~ n<n";
by (IND_TAC nat_ind (simp_tac nat_ss) "n" 1);
result();

goal Nat2.thy "m < n --> m < succ(n)";
by (IND_TAC nat_ind (simp_tac nat_ss) "m" 1);
by (rtac (impI RS allI) 1);
by (ALL_IND_TAC nat_ind (simp_tac nat_ss) 1);
by (fast_tac FOL_cs 1);
result();

goal Nat2.thy "m <= n --> m <= n+k";
by (IND_TAC nat_ind 
    (simp_tac (nat_ss addsimps [plus_0_right, plus_succ_right, le_imp_le_succ]))
     "k" 1);
val le_plus = result();

goal Nat2.thy "succ(m) <= n --> m <= n";
by (res_inst_tac [("x","n")]spec 1);
by (ALL_IND_TAC nat_exh (simp_tac (nat_ss addsimps [le_imp_le_succ])) 1);
val succ_le = result();

goal Nat2.thy "~m<n <-> n<=m";
by (IND_TAC nat_ind (simp_tac nat_ss) "n" 1);
by (rtac (impI RS allI) 1);
by (ALL_IND_TAC nat_ind (asm_simp_tac nat_ss) 1);
val not_less = result();

goal Nat2.thy "n<=m --> ~m<n";
by (simp_tac (nat_ss addsimps [not_less]) 1);
val le_imp_not_less = result();

goal Nat2.thy "m<n --> ~n<=m";
by (cut_facts_tac [not_less] 1 THEN fast_tac FOL_cs 1);
val not_le = result();

goal Nat2.thy "m+k<=n --> m<=n";
by (IND_TAC nat_ind (K all_tac) "k" 1);
by (simp_tac (nat_ss addsimps [plus_0_right]) 1);
by (rtac (impI RS allI) 1);
by (simp_tac (nat_ss addsimps [plus_succ_right]) 1);
by (REPEAT (resolve_tac [allI,impI] 1));
by (cut_facts_tac [succ_le] 1);
by (fast_tac FOL_cs 1);
val plus_le = result();

val prems = goal Nat2.thy "[| ~m=0;  m <= n |] ==> ~n=0";
by (cut_facts_tac prems 1);
by (REPEAT (etac rev_mp 1));
by (IND_TAC nat_exh (simp_tac nat_ss) "m" 1);
by (ALL_IND_TAC nat_exh (simp_tac nat_ss) 1);
val not0 = result();

goal Nat2.thy "a<=a' & b<=b' --> a+b<=a'+b'";
by (IND_TAC nat_ind (simp_tac (nat_ss addsimps [plus_0_right,le_plus])) "b" 1);
by (resolve_tac [impI RS allI] 1);
by (resolve_tac [allI RS allI] 1);
by (ALL_IND_TAC nat_exh (asm_simp_tac (nat_ss addsimps [plus_succ_right])) 1);
val plus_le_plus = result();

goal Nat2.thy "i<=j --> j<=k --> i<=k";
by (IND_TAC nat_ind (K all_tac) "i" 1);
by (simp_tac nat_ss 1);
by (resolve_tac [impI RS allI] 1);
by (ALL_IND_TAC nat_exh (simp_tac nat_ss) 1);
by (ALL_IND_TAC nat_exh (simp_tac nat_ss) 1);
by (fast_tac FOL_cs 1);
val le_trans = result();

goal Nat2.thy "i < j --> j <=k --> i < k";
by (IND_TAC nat_ind (K all_tac) "j" 1);
by (simp_tac nat_ss 1);
by (resolve_tac [impI RS allI] 1);
by (ALL_IND_TAC nat_exh (simp_tac nat_ss) 1);
by (ALL_IND_TAC nat_exh (simp_tac nat_ss) 1);
by (ALL_IND_TAC nat_exh (simp_tac nat_ss) 1);
by (fast_tac FOL_cs 1);
val less_le_trans = result();

goal Nat2.thy "succ(i) <= j <-> i < j";
by (IND_TAC nat_ind (simp_tac nat_ss) "j" 1);
by (resolve_tac [impI RS allI] 1);
by (ALL_IND_TAC nat_exh (asm_simp_tac nat_ss) 1);
val succ_le = result();

goal Nat2.thy "i<succ(j) <-> i=j | i<j";
by (IND_TAC nat_ind (simp_tac nat_ss) "j" 1);
by (ALL_IND_TAC nat_exh (simp_tac nat_ss) 1);
by (resolve_tac [impI RS allI] 1);
by (ALL_IND_TAC nat_exh (asm_simp_tac nat_ss) 1);
val less_succ = result();