(* Title: HOL/ATP_Linkup.thy
ID: $Id$
Author: Lawrence C Paulson
Author: Jia Meng, NICTA
*)
header{* The Isabelle-ATP Linkup *}
theory ATP_Linkup
imports Map Hilbert_Choice
uses
"Tools/polyhash.ML"
"Tools/res_clause.ML"
"Tools/ATP/reduce_axiomsN.ML"
("Tools/res_hol_clause.ML")
("Tools/res_axioms.ML")
("Tools/res_reconstruct.ML")
("Tools/ATP/watcher.ML")
("Tools/res_atp.ML")
("Tools/res_atp_provers.ML")
("Tools/res_atp_methods.ML")
"~~/src/Tools/Metis/metis.ML"
("Tools/metis_tools.ML")
begin
constdefs
COMBI :: "'a => 'a"
"COMBI P == P"
COMBK :: "'a => 'b => 'a"
"COMBK P Q == P"
COMBB :: "('b => 'c) => ('a => 'b) => 'a => 'c"
"COMBB P Q R == P (Q R)"
COMBC :: "('a => 'b => 'c) => 'b => 'a => 'c"
"COMBC P Q R == P R Q"
COMBS :: "('a => 'b => 'c) => ('a => 'b) => 'a => 'c"
"COMBS P Q R == P R (Q R)"
COMBB' :: "('a => 'c) => ('b => 'a) => ('d => 'b) => 'd => 'c"
"COMBB' M P Q R == M (P (Q R))"
COMBC' :: "('a => 'b => 'c) => ('d => 'a) => 'b => 'd => 'c"
"COMBC' M P Q R == M (P R) Q"
COMBS' :: "('a => 'b => 'c) => ('d => 'a) => ('d => 'b) => 'd => 'c"
"COMBS' M P Q R == M (P R) (Q R)"
fequal :: "'a => 'a => bool"
"fequal X Y == (X=Y)"
lemma fequal_imp_equal: "fequal X Y ==> X=Y"
by (simp add: fequal_def)
lemma equal_imp_fequal: "X=Y ==> fequal X Y"
by (simp add: fequal_def)
lemma K_simp: "COMBK P == (%Q. P)"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBK_def)
done
lemma I_simp: "COMBI == (%P. P)"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBI_def)
done
lemma B_simp: "COMBB P Q == %R. P (Q R)"
apply (rule eq_reflection)
apply (rule ext)
apply (simp add: COMBB_def)
done
text{*These two represent the equivalence between Boolean equality and iff.
They can't be converted to clauses automatically, as the iff would be
expanded...*}
lemma iff_positive: "P | Q | P=Q"
by blast
lemma iff_negative: "~P | ~Q | P=Q"
by blast
use "Tools/res_axioms.ML" --{*requires the combinators declared above*}
use "Tools/res_hol_clause.ML" --{*requires the combinators*}
use "Tools/res_reconstruct.ML"
use "Tools/ATP/watcher.ML"
use "Tools/res_atp.ML"
setup ResAxioms.meson_method_setup
subsection {* Setup for Vampire, E prover and SPASS *}
use "Tools/res_atp_provers.ML"
oracle vampire_oracle ("string * int") = {* ResAtpProvers.vampire_o *}
oracle eprover_oracle ("string * int") = {* ResAtpProvers.eprover_o *}
oracle spass_oracle ("string * int") = {* ResAtpProvers.spass_o *}
use "Tools/res_atp_methods.ML"
setup ResAtpMethods.ResAtps_setup
subsection {* The Metis prover *}
use "Tools/metis_tools.ML"
setup MetisTools.setup
end