(* Title: ZF/constructor.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
Constructor function module -- for (Co)Datatype Definitions
*)
signature CONSTRUCTOR_ARG =
sig
val thy : theory (*parent containing constructor defs*)
val big_rec_name : string (*name of mutually recursive set*)
val con_ty_lists : ((string*typ*mixfix) *
string * term list * term list) list list
(*description of constructors*)
end;
signature CONSTRUCTOR_RESULT =
sig
val con_defs : thm list (*definitions made in thy*)
val case_eqns : thm list (*equations for case operator*)
val free_iffs : thm list (*freeness rewrite rules*)
val free_SEs : thm list (*freeness destruct rules*)
val mk_free : string -> thm (*makes freeness theorems*)
end;
(*Proves theorems relating to constructors*)
functor Constructor_Fun (structure Const: CONSTRUCTOR_ARG and
Pr : PR and Su : SU) : CONSTRUCTOR_RESULT =
struct
open Logic Const Ind_Syntax;
(*1st element is the case definition; others are the constructors*)
val big_case_name = big_rec_name ^ "_case";
val con_defs = get_def thy big_case_name ::
map (get_def thy o #2) (flat con_ty_lists);
(** Prove the case theorem **)
(*Get the case term from its definition*)
val Const("==",_) $ big_case_tm $ _ =
hd con_defs |> rep_thm |> #prop |> Logic.unvarify;
val (_, big_case_args) = strip_comb big_case_tm;
(*Each equation has the form
rec_case(f_con1,...,f_conn)(coni(args)) = f_coni(args) *)
fun mk_case_equation (((id,T,syn), name, args, prems), case_free) =
mk_tprop (eq_const $ (big_case_tm $ (list_comb (Const(name,T), args)))
$ (list_comb (case_free, args))) ;
val case_trans = hd con_defs RS def_trans
and split_trans = Pr.split_eq RS meta_eq_to_obj_eq RS trans;
(*Proves a single case equation. Could use simp_tac, but it's slower!*)
fun case_tacsf con_def _ =
[rewtac con_def,
rtac case_trans 1,
REPEAT (resolve_tac [refl, split_trans,
Su.case_inl RS trans,
Su.case_inr RS trans] 1)];
fun prove_case_equation (arg,con_def) =
prove_goalw_cterm []
(cterm_of (sign_of thy) (mk_case_equation arg))
(case_tacsf con_def);
val free_iffs =
map standard (con_defs RL [def_swap_iff]) @
[Su.distinct, Su.distinct', Su.inl_iff, Su.inr_iff, Pr.pair_iff];
val free_SEs = map (gen_make_elim [conjE,FalseE]) (free_iffs RL [iffD1]);
val free_cs = ZF_cs addSEs free_SEs;
(*Typical theorems have the form ~con1=con2, con1=con2==>False,
con1(x)=con1(y) ==> x=y, con1(x)=con1(y) <-> x=y, etc. *)
fun mk_free s =
prove_goalw thy con_defs s
(fn prems => [cut_facts_tac prems 1, fast_tac free_cs 1]);
val case_eqns = map prove_case_equation
(flat con_ty_lists ~~ big_case_args ~~ tl con_defs);
end;