src/ZF/constructor.ML
author clasohm
Thu, 19 Oct 1995 13:25:03 +0100
changeset 1287 84f44b84d584
parent 1103 08fda5148971
child 1418 f5f97ee67cbb
permissions -rw-r--r--
corrected spelling of title (to test new CVS loginfo)

(*  Title: 	ZF/constructor.ML
    ID:         $Id$
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge

Constructor function module -- for (Co)Datatype Definitions
*)

signature CONSTRUCTOR_ARG =
  sig
  val thy    	   : theory		(*parent containing constructor defs*)
  val big_rec_name : string		(*name of mutually recursive set*)
  val con_ty_lists : ((string*typ*mixfix) * 
		      string * term list * term list) list list
					(*description of constructors*)
  end;

signature CONSTRUCTOR_RESULT =
  sig
  val con_defs	 : thm list		(*definitions made in thy*)
  val case_eqns  : thm list		(*equations for case operator*)
  val free_iffs  : thm list		(*freeness rewrite rules*)
  val free_SEs   : thm list		(*freeness destruct rules*)
  val mk_free    : string -> thm	(*makes freeness theorems*)
  end;


(*Proves theorems relating to constructors*)
functor Constructor_Fun (structure Const: CONSTRUCTOR_ARG and
                      Pr : PR and Su : SU) : CONSTRUCTOR_RESULT =
struct
open Logic Const Ind_Syntax;

(*1st element is the case definition; others are the constructors*)
val big_case_name = big_rec_name ^ "_case";

val con_defs = get_def thy big_case_name :: 
               map (get_def thy o #2) (flat con_ty_lists);

(** Prove the case theorem **)

(*Get the case term from its definition*)
val Const("==",_) $ big_case_tm $ _ =
    hd con_defs |> rep_thm |> #prop |> Logic.unvarify;

val (_, big_case_args) = strip_comb big_case_tm;

(*Each equation has the form 
  rec_case(f_con1,...,f_conn)(coni(args)) = f_coni(args) *)
fun mk_case_equation (((id,T,syn), name, args, prems), case_free) = 
    mk_tprop (eq_const $ (big_case_tm $ (list_comb (Const(name,T), args)))
		         $ (list_comb (case_free, args))) ;

val case_trans = hd con_defs RS def_trans
and split_trans = Pr.split_eq RS meta_eq_to_obj_eq RS trans;

(*Proves a single case equation.  Could use simp_tac, but it's slower!*)
fun case_tacsf con_def _ = 
  [rewtac con_def,
   rtac case_trans 1,
   REPEAT (resolve_tac [refl, split_trans, 
                        Su.case_inl RS trans, 
                        Su.case_inr RS trans] 1)];

fun prove_case_equation (arg,con_def) =
    prove_goalw_cterm [] 
        (cterm_of (sign_of thy) (mk_case_equation arg))
        (case_tacsf con_def);

val free_iffs = 
    map standard (con_defs RL [def_swap_iff]) @
    [Su.distinct, Su.distinct', Su.inl_iff, Su.inr_iff, Pr.pair_iff];

val free_SEs   = map (gen_make_elim [conjE,FalseE]) (free_iffs RL [iffD1]);

val free_cs = ZF_cs addSEs free_SEs;

(*Typical theorems have the form ~con1=con2, con1=con2==>False,
  con1(x)=con1(y) ==> x=y, con1(x)=con1(y) <-> x=y, etc.  *)
fun mk_free s =
    prove_goalw thy con_defs s
      (fn prems => [cut_facts_tac prems 1, fast_tac free_cs 1]);

val case_eqns = map prove_case_equation 
		    (flat con_ty_lists ~~ big_case_args ~~ tl con_defs);

end;