(* Title: Pure/display.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
Printing of theories, theorems, etc.
*)
signature DISPLAY =
sig
val show_hyps : bool ref
val show_tags : bool ref
val pretty_thm_no_quote: thm -> Pretty.T
val pretty_thm : thm -> Pretty.T
val pretty_thms : thm list -> Pretty.T
val string_of_thm : thm -> string
val pprint_thm : thm -> pprint_args -> unit
val print_thm : thm -> unit
val print_thms : thm list -> unit
val prth : thm -> thm
val prthq : thm Seq.seq -> thm Seq.seq
val prths : thm list -> thm list
val pretty_ctyp : ctyp -> Pretty.T
val pprint_ctyp : ctyp -> pprint_args -> unit
val string_of_ctyp : ctyp -> string
val print_ctyp : ctyp -> unit
val pretty_cterm : cterm -> Pretty.T
val pprint_cterm : cterm -> pprint_args -> unit
val string_of_cterm : cterm -> string
val print_cterm : cterm -> unit
val pretty_theory : theory -> Pretty.T
val pprint_theory : theory -> pprint_args -> unit
val print_syntax : theory -> unit
val print_theory : theory -> unit
val pretty_name_space : string * NameSpace.T -> Pretty.T
val show_consts : bool ref
end;
structure Display: DISPLAY =
struct
(** print thm **)
val show_hyps = ref true; (*false: print meta-hypotheses as dots*)
val show_tags = ref false; (*false: suppress tags*)
local
fun pretty_tag (name, args) = Pretty.strs (name :: map quote args);
val pretty_tags = Pretty.list "[" "]" o map pretty_tag;
fun is_oracle (Thm.Oracle _) = true
| is_oracle _ = false;
fun ex_oracle (Join (der, ders)) = is_oracle der orelse exists ex_oracle ders;
fun pretty_thm_aux quote th =
let
val {sign, hyps, prop, der, ...} = rep_thm th;
val xshyps = Thm.extra_shyps th;
val (_, tags) = Thm.get_name_tags th;
val prt_term = (if quote then Pretty.quote else I) o Sign.pretty_term sign;
val hlen = length xshyps + length hyps;
val ex_ora = ex_oracle der;
val hsymbs =
if hlen = 0 andalso not ex_ora then []
else if ! show_hyps then
[Pretty.brk 2, Pretty.list "[" "]"
(map prt_term hyps @ map (Sign.pretty_sort sign) xshyps @
(if ex_ora then [Pretty.str "!"] else []))]
else [Pretty.brk 2, Pretty.str ("[" ^ implode (replicate hlen ".") ^
(if ex_ora then "!" else "") ^ "]")];
val tsymbs =
if null tags orelse not (! show_tags) then []
else [Pretty.brk 1, pretty_tags tags];
in Pretty.block (prt_term prop :: (hsymbs @ tsymbs)) end;
in
val pretty_thm = pretty_thm_aux true;
val pretty_thm_no_quote = pretty_thm_aux false;
end;
val string_of_thm = Pretty.string_of o pretty_thm;
val pprint_thm = Pretty.pprint o pretty_thm;
fun pretty_thms [th] = pretty_thm th
| pretty_thms ths = Pretty.block (Pretty.fbreaks (map pretty_thm ths));
(* top-level commands for printing theorems *)
val print_thm = Pretty.writeln o pretty_thm;
val print_thms = Pretty.writeln o pretty_thms;
fun prth th = (print_thm th; th);
(*Print and return a sequence of theorems, separated by blank lines. *)
fun prthq thseq =
(Seq.print (fn _ => print_thm) 100000 thseq; thseq);
(*Print and return a list of theorems, separated by blank lines. *)
fun prths ths = (seq (fn th => (print_thm th; writeln "")) ths; ths);
(* other printing commands *)
fun pretty_ctyp cT =
let val {sign, T} = rep_ctyp cT in Sign.pretty_typ sign T end;
fun pprint_ctyp cT =
let val {sign, T} = rep_ctyp cT in Sign.pprint_typ sign T end;
fun string_of_ctyp cT =
let val {sign, T} = rep_ctyp cT in Sign.string_of_typ sign T end;
val print_ctyp = writeln o string_of_ctyp;
fun pretty_cterm ct =
let val {sign, t, ...} = rep_cterm ct in Sign.pretty_term sign t end;
fun pprint_cterm ct =
let val {sign, t, ...} = rep_cterm ct in Sign.pprint_term sign t end;
fun string_of_cterm ct =
let val {sign, t, ...} = rep_cterm ct in Sign.string_of_term sign t end;
val print_cterm = writeln o string_of_cterm;
(** print theory **)
val pretty_theory = Sign.pretty_sg o Theory.sign_of;
val pprint_theory = Sign.pprint_sg o Theory.sign_of;
val print_syntax = Syntax.print_syntax o Theory.syn_of;
(* pretty_name_space *)
fun pretty_name_space (kind, space) =
let
fun prt_entry (name, accs) = Pretty.block
(Pretty.str (quote name ^ " =") :: Pretty.brk 1 ::
Pretty.commas (map (Pretty.str o quote) accs));
in
Pretty.fbreaks (Pretty.str (kind ^ ":") :: map prt_entry (NameSpace.dest space))
|> Pretty.block
end;
(* print signature *)
fun print_sign sg =
let
fun prt_cls c = Sign.pretty_sort sg [c];
fun prt_sort S = Sign.pretty_sort sg S;
fun prt_arity t (c, Ss) = Sign.pretty_arity sg (t, Ss, [c]);
fun prt_typ ty = Pretty.quote (Sign.pretty_typ sg ty);
fun pretty_classes cs = Pretty.block
(Pretty.breaks (Pretty.str "classes:" :: map prt_cls cs));
fun pretty_classrel (c, cs) = Pretty.block
(prt_cls c :: Pretty.str " <" :: Pretty.brk 1 ::
Pretty.commas (map prt_cls cs));
fun pretty_default S = Pretty.block
[Pretty.str "default:", Pretty.brk 1, prt_sort S];
fun pretty_ty (t, n) = Pretty.block
[Pretty.str t, Pretty.spc 1, Pretty.str (string_of_int n)];
fun pretty_log_types ts = Pretty.block
(Pretty.breaks (Pretty.str "logical types:" :: map Pretty.str ts));
fun pretty_witness None = Pretty.str "universal non-emptiness witness: --"
| pretty_witness (Some (T, S)) = Pretty.block
[Pretty.str "universal non-emptiness witness:", Pretty.brk 1, prt_typ T,
Pretty.brk 1, prt_sort S];
fun pretty_abbr (t, (vs, rhs)) = Pretty.block
[prt_typ (Type (t, map (fn v => TVar ((v, 0), [])) vs)),
Pretty.str " =", Pretty.brk 1, prt_typ rhs];
fun pretty_arities (t, ars) = map (prt_arity t) ars;
fun pretty_const (c, ty) = Pretty.block
[Pretty.str c, Pretty.str " ::", Pretty.brk 1, prt_typ ty];
val {self = _, tsig, const_tab, syn = _, path, spaces, data} = Sign.rep_sg sg;
val spaces' = Library.sort_wrt fst spaces;
val {classes, classrel, default, tycons = type_tab, log_types, univ_witness, abbrs, arities} =
Type.rep_tsig tsig;
val tycons = Sign.cond_extern_table sg Sign.typeK type_tab;
val consts = Sign.cond_extern_table sg Sign.constK const_tab;
in
Pretty.writeln (Pretty.strs ("stamps:" :: Sign.stamp_names_of sg));
Pretty.writeln (Pretty.strs ("data:" :: Sign.data_kinds data));
Pretty.writeln (Pretty.strs ["name prefix:", NameSpace.pack path]);
Pretty.writeln (Pretty.big_list "name spaces:" (map pretty_name_space spaces'));
Pretty.writeln (pretty_classes classes);
Pretty.writeln (Pretty.big_list "class relation:"
(map pretty_classrel (Symtab.dest classrel)));
Pretty.writeln (pretty_default default);
Pretty.writeln (pretty_log_types log_types);
Pretty.writeln (pretty_witness univ_witness);
Pretty.writeln (Pretty.big_list "type constructors:" (map pretty_ty tycons));
Pretty.writeln (Pretty.big_list "type abbreviations:" (map pretty_abbr (Symtab.dest abbrs)));
Pretty.writeln (Pretty.big_list "type arities:"
(flat (map pretty_arities (Symtab.dest arities))));
Pretty.writeln (Pretty.big_list "consts:" (map pretty_const consts))
end;
(* print axioms, oracles, theorems *)
fun print_thy thy =
let
val {sign, axioms, oracles, ...} = Theory.rep_theory thy;
fun cond_externs kind = Sign.cond_extern_table sign kind;
fun prt_axm (a, t) = Pretty.block
[Pretty.str (a ^ ":"), Pretty.brk 1, Pretty.quote (Sign.pretty_term sign t)];
in
Pretty.writeln (Pretty.big_list "axioms:" (map prt_axm (cond_externs Theory.axiomK axioms)));
Pretty.writeln (Pretty.strs ("oracles:" :: (map #1 (cond_externs Theory.oracleK oracles))))
end;
fun print_theory thy = (print_sign (Theory.sign_of thy); print_thy thy);
(*also show consts in case of showing types?*)
val show_consts = ref false;
end;
open Display;