more robust concurrency: use shared Browser_Info.Context with synchronized file-system operations;
tuned signature;
(* Title: HOL/Nitpick_Examples/Mono_Nits.thy
Author: Jasmin Blanchette, TU Muenchen
Copyright 2009-2011
Examples featuring Nitpick's monotonicity check.
*)
section \<open>Examples Featuring Nitpick's Monotonicity Check\<close>
theory Mono_Nits
imports Main
(* "~/afp/thys/DPT-SAT-Solver/DPT_SAT_Solver" *)
(* "~/afp/thys/AVL-Trees/AVL2" "~/afp/thys/Huffman/Huffman" *)
begin
ML \<open>
open Nitpick_Util
open Nitpick_HOL
open Nitpick_Preproc
exception BUG
val thy = \<^theory>
val ctxt = \<^context>
val subst = []
val tac_timeout = seconds 1.0
val case_names = case_const_names ctxt
val defs = all_defs_of thy subst
val nondefs = all_nondefs_of ctxt subst
val def_tables = const_def_tables ctxt subst defs
val nondef_table = const_nondef_table nondefs
val simp_table = Unsynchronized.ref (const_simp_table ctxt subst)
val psimp_table = const_psimp_table ctxt subst
val choice_spec_table = const_choice_spec_table ctxt subst
val intro_table = inductive_intro_table ctxt subst def_tables
val ground_thm_table = ground_theorem_table thy
val ersatz_table = ersatz_table ctxt
val hol_ctxt as {thy, ...} : hol_context =
{thy = thy, ctxt = ctxt, max_bisim_depth = ~1, boxes = [], wfs = [],
user_axioms = NONE, debug = false, whacks = [], binary_ints = SOME false,
destroy_constrs = true, specialize = false, star_linear_preds = false,
total_consts = NONE, needs = NONE, tac_timeout = tac_timeout, evals = [],
case_names = case_names, def_tables = def_tables,
nondef_table = nondef_table, nondefs = nondefs, simp_table = simp_table,
psimp_table = psimp_table, choice_spec_table = choice_spec_table,
intro_table = intro_table, ground_thm_table = ground_thm_table,
ersatz_table = ersatz_table, skolems = Unsynchronized.ref [],
special_funs = Unsynchronized.ref [], unrolled_preds = Unsynchronized.ref [],
wf_cache = Unsynchronized.ref [], constr_cache = Unsynchronized.ref []}
val binarize = false
fun is_mono t =
Nitpick_Mono.formulas_monotonic hol_ctxt binarize \<^typ>\<open>'a\<close> ([t], [])
fun is_const t =
let val T = fastype_of t in
Logic.mk_implies (Logic.mk_equals (Free ("dummyP", T), t), \<^Const>\<open>False\<close>)
|> is_mono
end
fun mono t = is_mono t orelse raise BUG
fun nonmono t = not (is_mono t) orelse raise BUG
fun const t = is_const t orelse raise BUG
fun nonconst t = not (is_const t) orelse raise BUG
\<close>
ML \<open>Nitpick_Mono.trace := false\<close>
ML_val \<open>const \<^term>\<open>A::('a\<Rightarrow>'b)\<close>\<close>
ML_val \<open>const \<^term>\<open>(A::'a set) = A\<close>\<close>
ML_val \<open>const \<^term>\<open>(A::'a set set) = A\<close>\<close>
ML_val \<open>const \<^term>\<open>(\<lambda>x::'a set. a \<in> x)\<close>\<close>
ML_val \<open>const \<^term>\<open>{{a::'a}} = C\<close>\<close>
ML_val \<open>const \<^term>\<open>{f::'a\<Rightarrow>nat} = {g::'a\<Rightarrow>nat}\<close>\<close>
ML_val \<open>const \<^term>\<open>A \<union> (B::'a set)\<close>\<close>
ML_val \<open>const \<^term>\<open>\<lambda>A B x::'a. A x \<or> B x\<close>\<close>
ML_val \<open>const \<^term>\<open>P (a::'a)\<close>\<close>
ML_val \<open>const \<^term>\<open>\<lambda>a::'a. b (c (d::'a)) (e::'a) (f::'a)\<close>\<close>
ML_val \<open>const \<^term>\<open>\<forall>A::'a set. a \<in> A\<close>\<close>
ML_val \<open>const \<^term>\<open>\<forall>A::'a set. P A\<close>\<close>
ML_val \<open>const \<^term>\<open>P \<or> Q\<close>\<close>
ML_val \<open>const \<^term>\<open>A \<union> B = (C::'a set)\<close>\<close>
ML_val \<open>const \<^term>\<open>(\<lambda>A B x::'a. A x \<or> B x) A B = C\<close>\<close>
ML_val \<open>const \<^term>\<open>(if P then (A::'a set) else B) = C\<close>\<close>
ML_val \<open>const \<^term>\<open>let A = (C::'a set) in A \<union> B\<close>\<close>
ML_val \<open>const \<^term>\<open>THE x::'b. P x\<close>\<close>
ML_val \<open>const \<^term>\<open>(\<lambda>x::'a. False)\<close>\<close>
ML_val \<open>const \<^term>\<open>(\<lambda>x::'a. True)\<close>\<close>
ML_val \<open>const \<^term>\<open>(\<lambda>x::'a. False) = (\<lambda>x::'a. False)\<close>\<close>
ML_val \<open>const \<^term>\<open>(\<lambda>x::'a. True) = (\<lambda>x::'a. True)\<close>\<close>
ML_val \<open>const \<^term>\<open>Let (a::'a) A\<close>\<close>
ML_val \<open>const \<^term>\<open>A (a::'a)\<close>\<close>
ML_val \<open>const \<^term>\<open>insert (a::'a) A = B\<close>\<close>
ML_val \<open>const \<^term>\<open>- (A::'a set)\<close>\<close>
ML_val \<open>const \<^term>\<open>finite (A::'a set)\<close>\<close>
ML_val \<open>const \<^term>\<open>\<not> finite (A::'a set)\<close>\<close>
ML_val \<open>const \<^term>\<open>finite (A::'a set set)\<close>\<close>
ML_val \<open>const \<^term>\<open>\<lambda>a::'a. A a \<and> \<not> B a\<close>\<close>
ML_val \<open>const \<^term>\<open>A < (B::'a set)\<close>\<close>
ML_val \<open>const \<^term>\<open>A \<le> (B::'a set)\<close>\<close>
ML_val \<open>const \<^term>\<open>[a::'a]\<close>\<close>
ML_val \<open>const \<^term>\<open>[a::'a set]\<close>\<close>
ML_val \<open>const \<^term>\<open>[A \<union> (B::'a set)]\<close>\<close>
ML_val \<open>const \<^term>\<open>[A \<union> (B::'a set)] = [C]\<close>\<close>
ML_val \<open>const \<^term>\<open>{(\<lambda>x::'a. x = a)} = C\<close>\<close>
ML_val \<open>const \<^term>\<open>(\<lambda>a::'a. \<not> A a) = B\<close>\<close>
ML_val \<open>const \<^prop>\<open>\<forall>F f g (h::'a set). F f \<and> F g \<and> \<not> f a \<and> g a \<longrightarrow> \<not> f a\<close>\<close>
ML_val \<open>const \<^term>\<open>\<lambda>A B x::'a. A x \<and> B x \<and> A = B\<close>\<close>
ML_val \<open>const \<^term>\<open>p = (\<lambda>(x::'a) (y::'a). P x \<or> \<not> Q y)\<close>\<close>
ML_val \<open>const \<^term>\<open>p = (\<lambda>(x::'a) (y::'a). p x y :: bool)\<close>\<close>
ML_val \<open>const \<^term>\<open>p = (\<lambda>A B x. A x \<and> \<not> B x) (\<lambda>x. True) (\<lambda>y. x \<noteq> y)\<close>\<close>
ML_val \<open>const \<^term>\<open>p = (\<lambda>y. x \<noteq> y)\<close>\<close>
ML_val \<open>const \<^term>\<open>(\<lambda>x. (p::'a\<Rightarrow>bool\<Rightarrow>bool) x False)\<close>\<close>
ML_val \<open>const \<^term>\<open>(\<lambda>x y. (p::'a\<Rightarrow>'a\<Rightarrow>bool\<Rightarrow>bool) x y False)\<close>\<close>
ML_val \<open>const \<^term>\<open>f = (\<lambda>x::'a. P x \<longrightarrow> Q x)\<close>\<close>
ML_val \<open>const \<^term>\<open>\<forall>a::'a. P a\<close>\<close>
ML_val \<open>nonconst \<^term>\<open>\<forall>P (a::'a). P a\<close>\<close>
ML_val \<open>nonconst \<^term>\<open>THE x::'a. P x\<close>\<close>
ML_val \<open>nonconst \<^term>\<open>SOME x::'a. P x\<close>\<close>
ML_val \<open>nonconst \<^term>\<open>(\<lambda>A B x::'a. A x \<or> B x) = myunion\<close>\<close>
ML_val \<open>nonconst \<^term>\<open>(\<lambda>x::'a. False) = (\<lambda>x::'a. True)\<close>\<close>
ML_val \<open>nonconst \<^prop>\<open>\<forall>F f g (h::'a set). F f \<and> F g \<and> \<not> a \<in> f \<and> a \<in> g \<longrightarrow> F h\<close>\<close>
ML_val \<open>mono \<^prop>\<open>Q (\<forall>x::'a set. P x)\<close>\<close>
ML_val \<open>mono \<^prop>\<open>P (a::'a)\<close>\<close>
ML_val \<open>mono \<^prop>\<open>{a} = {b::'a}\<close>\<close>
ML_val \<open>mono \<^prop>\<open>(\<lambda>x. x = a) = (\<lambda>y. y = (b::'a))\<close>\<close>
ML_val \<open>mono \<^prop>\<open>(a::'a) \<in> P \<and> P \<union> P = P\<close>\<close>
ML_val \<open>mono \<^prop>\<open>\<forall>F::'a set set. P\<close>\<close>
ML_val \<open>mono \<^prop>\<open>\<not> (\<forall>F f g (h::'a set). F f \<and> F g \<and> \<not> a \<in> f \<and> a \<in> g \<longrightarrow> F h)\<close>\<close>
ML_val \<open>mono \<^prop>\<open>\<not> Q (\<forall>x::'a set. P x)\<close>\<close>
ML_val \<open>mono \<^prop>\<open>\<not> (\<forall>x::'a. P x)\<close>\<close>
ML_val \<open>mono \<^prop>\<open>myall P = (P = (\<lambda>x::'a. True))\<close>\<close>
ML_val \<open>mono \<^prop>\<open>myall P = (P = (\<lambda>x::'a. False))\<close>\<close>
ML_val \<open>mono \<^prop>\<open>\<forall>x::'a. P x\<close>\<close>
ML_val \<open>mono \<^term>\<open>(\<lambda>A B x::'a. A x \<or> B x) \<noteq> myunion\<close>\<close>
ML_val \<open>nonmono \<^prop>\<open>A = (\<lambda>x::'a. True) \<and> A = (\<lambda>x. False)\<close>\<close>
ML_val \<open>nonmono \<^prop>\<open>\<forall>F f g (h::'a set). F f \<and> F g \<and> \<not> a \<in> f \<and> a \<in> g \<longrightarrow> F h\<close>\<close>
ML \<open>
val preproc_timeout = seconds 5.0
val mono_timeout = seconds 1.0
fun is_forbidden_theorem name =
length (Long_Name.explode name) <> 2 orelse
String.isPrefix "type_definition" (List.last (Long_Name.explode name)) orelse
String.isPrefix "arity_" (List.last (Long_Name.explode name)) orelse
String.isSuffix "_def" name orelse
String.isSuffix "_raw" name
fun theorems_of thy =
filter (fn (name, th) =>
not (is_forbidden_theorem name) andalso
Thm.theory_name th = Context.theory_name thy)
(Global_Theory.all_thms_of thy true)
fun check_formulas tsp =
let
fun is_type_actually_monotonic T =
Nitpick_Mono.formulas_monotonic hol_ctxt binarize T tsp
val free_Ts = fold Term.add_tfrees ((op @) tsp) [] |> map TFree
val (mono_free_Ts, nonmono_free_Ts) =
Timeout.apply mono_timeout
(List.partition is_type_actually_monotonic) free_Ts
in
if not (null mono_free_Ts) then "MONO"
else if not (null nonmono_free_Ts) then "NONMONO"
else "NIX"
end
handle Timeout.TIMEOUT _ => "TIMEOUT"
| NOT_SUPPORTED _ => "UNSUP"
| exn => if Exn.is_interrupt exn then Exn.reraise exn else "UNKNOWN"
fun check_theory thy =
let
val path = File.tmp_path (Context.theory_name thy ^ ".out" |> Path.explode)
val _ = File.write path ""
fun check_theorem (name, th) =
let
val t = th |> Thm.prop_of |> Type.legacy_freeze |> close_form
val neg_t = Logic.mk_implies (t, \<^prop>\<open>False\<close>)
val (nondef_ts, def_ts, _, _, _, _) =
Timeout.apply preproc_timeout (preprocess_formulas hol_ctxt [])
neg_t
val res = name ^ ": " ^ check_formulas (nondef_ts, def_ts)
in File.append path (res ^ "\n"); writeln res end
handle Timeout.TIMEOUT _ => ()
in thy |> theorems_of |> List.app check_theorem end
\<close>
(*
ML_val {* check_theory @{theory AVL2} *}
ML_val {* check_theory @{theory Fun} *}
ML_val {* check_theory @{theory Huffman} *}
ML_val {* check_theory @{theory List} *}
ML_val {* check_theory @{theory Map} *}
ML_val {* check_theory @{theory Relation} *}
*)
end