src/HOL/Real.thy
author wenzelm
Sun, 21 Aug 2022 15:00:14 +0200
changeset 75952 864b10457a7d
parent 75864 3842556b757c
child 77490 2c86ea8961b5
permissions -rw-r--r--
more robust concurrency: use shared Browser_Info.Context with synchronized file-system operations; tuned signature;

(*  Title:      HOL/Real.thy
    Author:     Jacques D. Fleuriot, University of Edinburgh, 1998
    Author:     Larry Paulson, University of Cambridge
    Author:     Jeremy Avigad, Carnegie Mellon University
    Author:     Florian Zuleger, Johannes Hoelzl, and Simon Funke, TU Muenchen
    Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4
    Construction of Cauchy Reals by Brian Huffman, 2010
*)

section \<open>Development of the Reals using Cauchy Sequences\<close>

theory Real
imports Rat
begin

text \<open>
  This theory contains a formalization of the real numbers as equivalence
  classes of Cauchy sequences of rationals. See the AFP entry
  @{text Dedekind_Real} for an alternative construction using
  Dedekind cuts.
\<close>


subsection \<open>Preliminary lemmas\<close>

text\<open>Useful in convergence arguments\<close>
lemma inverse_of_nat_le:
  fixes n::nat shows "\<lbrakk>n \<le> m; n\<noteq>0\<rbrakk> \<Longrightarrow> 1 / of_nat m \<le> (1::'a::linordered_field) / of_nat n"
  by (simp add: frac_le)

lemma add_diff_add: "(a + c) - (b + d) = (a - b) + (c - d)"
  for a b c d :: "'a::ab_group_add"
  by simp

lemma minus_diff_minus: "- a - - b = - (a - b)"
  for a b :: "'a::ab_group_add"
  by simp

lemma mult_diff_mult: "(x * y - a * b) = x * (y - b) + (x - a) * b"
  for x y a b :: "'a::ring"
  by (simp add: algebra_simps)

lemma inverse_diff_inverse:
  fixes a b :: "'a::division_ring"
  assumes "a \<noteq> 0" and "b \<noteq> 0"
  shows "inverse a - inverse b = - (inverse a * (a - b) * inverse b)"
  using assms by (simp add: algebra_simps)

lemma obtain_pos_sum:
  fixes r :: rat assumes r: "0 < r"
  obtains s t where "0 < s" and "0 < t" and "r = s + t"
proof
  from r show "0 < r/2" by simp
  from r show "0 < r/2" by simp
  show "r = r/2 + r/2" by simp
qed


subsection \<open>Sequences that converge to zero\<close>

definition vanishes :: "(nat \<Rightarrow> rat) \<Rightarrow> bool"
  where "vanishes X \<longleftrightarrow> (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r)"

lemma vanishesI: "(\<And>r. 0 < r \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r) \<Longrightarrow> vanishes X"
  unfolding vanishes_def by simp

lemma vanishesD: "vanishes X \<Longrightarrow> 0 < r \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r"
  unfolding vanishes_def by simp

lemma vanishes_const [simp]: "vanishes (\<lambda>n. c) \<longleftrightarrow> c = 0"
proof (cases "c = 0")
  case True
  then show ?thesis
    by (simp add: vanishesI)    
next
  case False
  then show ?thesis
    unfolding vanishes_def
    using zero_less_abs_iff by blast
qed

lemma vanishes_minus: "vanishes X \<Longrightarrow> vanishes (\<lambda>n. - X n)"
  unfolding vanishes_def by simp

lemma vanishes_add:
  assumes X: "vanishes X"
    and Y: "vanishes Y"
  shows "vanishes (\<lambda>n. X n + Y n)"
proof (rule vanishesI)
  fix r :: rat
  assume "0 < r"
  then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t"
    by (rule obtain_pos_sum)
  obtain i where i: "\<forall>n\<ge>i. \<bar>X n\<bar> < s"
    using vanishesD [OF X s] ..
  obtain j where j: "\<forall>n\<ge>j. \<bar>Y n\<bar> < t"
    using vanishesD [OF Y t] ..
  have "\<forall>n\<ge>max i j. \<bar>X n + Y n\<bar> < r"
  proof clarsimp
    fix n
    assume n: "i \<le> n" "j \<le> n"
    have "\<bar>X n + Y n\<bar> \<le> \<bar>X n\<bar> + \<bar>Y n\<bar>"
      by (rule abs_triangle_ineq)
    also have "\<dots> < s + t"
      by (simp add: add_strict_mono i j n)
    finally show "\<bar>X n + Y n\<bar> < r"
      by (simp only: r)
  qed
  then show "\<exists>k. \<forall>n\<ge>k. \<bar>X n + Y n\<bar> < r" ..
qed

lemma vanishes_diff:
  assumes "vanishes X" "vanishes Y"
  shows "vanishes (\<lambda>n. X n - Y n)"
  unfolding diff_conv_add_uminus by (intro vanishes_add vanishes_minus assms)

lemma vanishes_mult_bounded:
  assumes X: "\<exists>a>0. \<forall>n. \<bar>X n\<bar> < a"
  assumes Y: "vanishes (\<lambda>n. Y n)"
  shows "vanishes (\<lambda>n. X n * Y n)"
proof (rule vanishesI)
  fix r :: rat
  assume r: "0 < r"
  obtain a where a: "0 < a" "\<forall>n. \<bar>X n\<bar> < a"
    using X by blast
  obtain b where b: "0 < b" "r = a * b"
  proof
    show "0 < r / a" using r a by simp
    show "r = a * (r / a)" using a by simp
  qed
  obtain k where k: "\<forall>n\<ge>k. \<bar>Y n\<bar> < b"
    using vanishesD [OF Y b(1)] ..
  have "\<forall>n\<ge>k. \<bar>X n * Y n\<bar> < r"
    by (simp add: b(2) abs_mult mult_strict_mono' a k)
  then show "\<exists>k. \<forall>n\<ge>k. \<bar>X n * Y n\<bar> < r" ..
qed


subsection \<open>Cauchy sequences\<close>

definition cauchy :: "(nat \<Rightarrow> rat) \<Rightarrow> bool"
  where "cauchy X \<longleftrightarrow> (\<forall>r>0. \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r)"

lemma cauchyI: "(\<And>r. 0 < r \<Longrightarrow> \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r) \<Longrightarrow> cauchy X"
  unfolding cauchy_def by simp

lemma cauchyD: "cauchy X \<Longrightarrow> 0 < r \<Longrightarrow> \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r"
  unfolding cauchy_def by simp

lemma cauchy_const [simp]: "cauchy (\<lambda>n. x)"
  unfolding cauchy_def by simp

lemma cauchy_add [simp]:
  assumes X: "cauchy X" and Y: "cauchy Y"
  shows "cauchy (\<lambda>n. X n + Y n)"
proof (rule cauchyI)
  fix r :: rat
  assume "0 < r"
  then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t"
    by (rule obtain_pos_sum)
  obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s"
    using cauchyD [OF X s] ..
  obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>Y m - Y n\<bar> < t"
    using cauchyD [OF Y t] ..
  have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>(X m + Y m) - (X n + Y n)\<bar> < r"
  proof clarsimp
    fix m n
    assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n"
    have "\<bar>(X m + Y m) - (X n + Y n)\<bar> \<le> \<bar>X m - X n\<bar> + \<bar>Y m - Y n\<bar>"
      unfolding add_diff_add by (rule abs_triangle_ineq)
    also have "\<dots> < s + t"
      by (rule add_strict_mono) (simp_all add: i j *)
    finally show "\<bar>(X m + Y m) - (X n + Y n)\<bar> < r" by (simp only: r)
  qed
  then show "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>(X m + Y m) - (X n + Y n)\<bar> < r" ..
qed

lemma cauchy_minus [simp]:
  assumes X: "cauchy X"
  shows "cauchy (\<lambda>n. - X n)"
  using assms unfolding cauchy_def
  unfolding minus_diff_minus abs_minus_cancel .

lemma cauchy_diff [simp]:
  assumes "cauchy X" "cauchy Y"
  shows "cauchy (\<lambda>n. X n - Y n)"
  using assms unfolding diff_conv_add_uminus by (simp del: add_uminus_conv_diff)

lemma cauchy_imp_bounded:
  assumes "cauchy X"
  shows "\<exists>b>0. \<forall>n. \<bar>X n\<bar> < b"
proof -
  obtain k where k: "\<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < 1"
    using cauchyD [OF assms zero_less_one] ..
  show "\<exists>b>0. \<forall>n. \<bar>X n\<bar> < b"
  proof (intro exI conjI allI)
    have "0 \<le> \<bar>X 0\<bar>" by simp
    also have "\<bar>X 0\<bar> \<le> Max (abs ` X ` {..k})" by simp
    finally have "0 \<le> Max (abs ` X ` {..k})" .
    then show "0 < Max (abs ` X ` {..k}) + 1" by simp
  next
    fix n :: nat
    show "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1"
    proof (rule linorder_le_cases)
      assume "n \<le> k"
      then have "\<bar>X n\<bar> \<le> Max (abs ` X ` {..k})" by simp
      then show "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1" by simp
    next
      assume "k \<le> n"
      have "\<bar>X n\<bar> = \<bar>X k + (X n - X k)\<bar>" by simp
      also have "\<bar>X k + (X n - X k)\<bar> \<le> \<bar>X k\<bar> + \<bar>X n - X k\<bar>"
        by (rule abs_triangle_ineq)
      also have "\<dots> < Max (abs ` X ` {..k}) + 1"
        by (rule add_le_less_mono) (simp_all add: k \<open>k \<le> n\<close>)
      finally show "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1" .
    qed
  qed
qed

lemma cauchy_mult [simp]:
  assumes X: "cauchy X" and Y: "cauchy Y"
  shows "cauchy (\<lambda>n. X n * Y n)"
proof (rule cauchyI)
  fix r :: rat assume "0 < r"
  then obtain u v where u: "0 < u" and v: "0 < v" and "r = u + v"
    by (rule obtain_pos_sum)
  obtain a where a: "0 < a" "\<forall>n. \<bar>X n\<bar> < a"
    using cauchy_imp_bounded [OF X] by blast
  obtain b where b: "0 < b" "\<forall>n. \<bar>Y n\<bar> < b"
    using cauchy_imp_bounded [OF Y] by blast
  obtain s t where s: "0 < s" and t: "0 < t" and r: "r = a * t + s * b"
  proof
    show "0 < v/b" using v b(1) by simp
    show "0 < u/a" using u a(1) by simp
    show "r = a * (u/a) + (v/b) * b"
      using a(1) b(1) \<open>r = u + v\<close> by simp
  qed
  obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s"
    using cauchyD [OF X s] ..
  obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>Y m - Y n\<bar> < t"
    using cauchyD [OF Y t] ..
  have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>X m * Y m - X n * Y n\<bar> < r"
  proof clarsimp
    fix m n
    assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n"
    have "\<bar>X m * Y m - X n * Y n\<bar> = \<bar>X m * (Y m - Y n) + (X m - X n) * Y n\<bar>"
      unfolding mult_diff_mult ..
    also have "\<dots> \<le> \<bar>X m * (Y m - Y n)\<bar> + \<bar>(X m - X n) * Y n\<bar>"
      by (rule abs_triangle_ineq)
    also have "\<dots> = \<bar>X m\<bar> * \<bar>Y m - Y n\<bar> + \<bar>X m - X n\<bar> * \<bar>Y n\<bar>"
      unfolding abs_mult ..
    also have "\<dots> < a * t + s * b"
      by (simp_all add: add_strict_mono mult_strict_mono' a b i j *)
    finally show "\<bar>X m * Y m - X n * Y n\<bar> < r"
      by (simp only: r)
  qed
  then show "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m * Y m - X n * Y n\<bar> < r" ..
qed

lemma cauchy_not_vanishes_cases:
  assumes X: "cauchy X"
  assumes nz: "\<not> vanishes X"
  shows "\<exists>b>0. \<exists>k. (\<forall>n\<ge>k. b < - X n) \<or> (\<forall>n\<ge>k. b < X n)"
proof -
  obtain r where "0 < r" and r: "\<forall>k. \<exists>n\<ge>k. r \<le> \<bar>X n\<bar>"
    using nz unfolding vanishes_def by (auto simp add: not_less)
  obtain s t where s: "0 < s" and t: "0 < t" and "r = s + t"
    using \<open>0 < r\<close> by (rule obtain_pos_sum)
  obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s"
    using cauchyD [OF X s] ..
  obtain k where "i \<le> k" and "r \<le> \<bar>X k\<bar>"
    using r by blast
  have k: "\<forall>n\<ge>k. \<bar>X n - X k\<bar> < s"
    using i \<open>i \<le> k\<close> by auto
  have "X k \<le> - r \<or> r \<le> X k"
    using \<open>r \<le> \<bar>X k\<bar>\<close> by auto
  then have "(\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)"
    unfolding \<open>r = s + t\<close> using k by auto
  then have "\<exists>k. (\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)" ..
  then show "\<exists>t>0. \<exists>k. (\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)"
    using t by auto
qed

lemma cauchy_not_vanishes:
  assumes X: "cauchy X"
    and nz: "\<not> vanishes X"
  shows "\<exists>b>0. \<exists>k. \<forall>n\<ge>k. b < \<bar>X n\<bar>"
  using cauchy_not_vanishes_cases [OF assms]
  by (elim ex_forward conj_forward asm_rl) auto

lemma cauchy_inverse [simp]:
  assumes X: "cauchy X"
    and nz: "\<not> vanishes X"
  shows "cauchy (\<lambda>n. inverse (X n))"
proof (rule cauchyI)
  fix r :: rat
  assume "0 < r"
  obtain b i where b: "0 < b" and i: "\<forall>n\<ge>i. b < \<bar>X n\<bar>"
    using cauchy_not_vanishes [OF X nz] by blast
  from b i have nz: "\<forall>n\<ge>i. X n \<noteq> 0" by auto
  obtain s where s: "0 < s" and r: "r = inverse b * s * inverse b"
  proof
    show "0 < b * r * b" by (simp add: \<open>0 < r\<close> b)
    show "r = inverse b * (b * r * b) * inverse b"
      using b by simp
  qed
  obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>X m - X n\<bar> < s"
    using cauchyD [OF X s] ..
  have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>inverse (X m) - inverse (X n)\<bar> < r"
  proof clarsimp
    fix m n
    assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n"
    have "\<bar>inverse (X m) - inverse (X n)\<bar> = inverse \<bar>X m\<bar> * \<bar>X m - X n\<bar> * inverse \<bar>X n\<bar>"
      by (simp add: inverse_diff_inverse nz * abs_mult)
    also have "\<dots> < inverse b * s * inverse b"
      by (simp add: mult_strict_mono less_imp_inverse_less i j b * s)
    finally show "\<bar>inverse (X m) - inverse (X n)\<bar> < r" by (simp only: r)
  qed
  then show "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>inverse (X m) - inverse (X n)\<bar> < r" ..
qed

lemma vanishes_diff_inverse:
  assumes X: "cauchy X" "\<not> vanishes X"
    and Y: "cauchy Y" "\<not> vanishes Y"
    and XY: "vanishes (\<lambda>n. X n - Y n)"
  shows "vanishes (\<lambda>n. inverse (X n) - inverse (Y n))"
proof (rule vanishesI)
  fix r :: rat
  assume r: "0 < r"
  obtain a i where a: "0 < a" and i: "\<forall>n\<ge>i. a < \<bar>X n\<bar>"
    using cauchy_not_vanishes [OF X] by blast
  obtain b j where b: "0 < b" and j: "\<forall>n\<ge>j. b < \<bar>Y n\<bar>"
    using cauchy_not_vanishes [OF Y] by blast
  obtain s where s: "0 < s" and "inverse a * s * inverse b = r"
  proof
    show "0 < a * r * b"
      using a r b by simp
    show "inverse a * (a * r * b) * inverse b = r"
      using a r b by simp
  qed
  obtain k where k: "\<forall>n\<ge>k. \<bar>X n - Y n\<bar> < s"
    using vanishesD [OF XY s] ..
  have "\<forall>n\<ge>max (max i j) k. \<bar>inverse (X n) - inverse (Y n)\<bar> < r"
  proof clarsimp
    fix n
    assume n: "i \<le> n" "j \<le> n" "k \<le> n"
    with i j a b have "X n \<noteq> 0" and "Y n \<noteq> 0"
      by auto
    then have "\<bar>inverse (X n) - inverse (Y n)\<bar> = inverse \<bar>X n\<bar> * \<bar>X n - Y n\<bar> * inverse \<bar>Y n\<bar>"
      by (simp add: inverse_diff_inverse abs_mult)
    also have "\<dots> < inverse a * s * inverse b"
      by (intro mult_strict_mono' less_imp_inverse_less) (simp_all add: a b i j k n)
    also note \<open>inverse a * s * inverse b = r\<close>
    finally show "\<bar>inverse (X n) - inverse (Y n)\<bar> < r" .
  qed
  then show "\<exists>k. \<forall>n\<ge>k. \<bar>inverse (X n) - inverse (Y n)\<bar> < r" ..
qed


subsection \<open>Equivalence relation on Cauchy sequences\<close>

definition realrel :: "(nat \<Rightarrow> rat) \<Rightarrow> (nat \<Rightarrow> rat) \<Rightarrow> bool"
  where "realrel = (\<lambda>X Y. cauchy X \<and> cauchy Y \<and> vanishes (\<lambda>n. X n - Y n))"

lemma realrelI [intro?]: "cauchy X \<Longrightarrow> cauchy Y \<Longrightarrow> vanishes (\<lambda>n. X n - Y n) \<Longrightarrow> realrel X Y"
  by (simp add: realrel_def)

lemma realrel_refl: "cauchy X \<Longrightarrow> realrel X X"
  by (simp add: realrel_def)

lemma symp_realrel: "symp realrel"
  by (simp add: abs_minus_commute realrel_def symp_def vanishes_def)

lemma transp_realrel: "transp realrel"
  unfolding realrel_def
  by (rule transpI) (force simp add: dest: vanishes_add)

lemma part_equivp_realrel: "part_equivp realrel"
  by (blast intro: part_equivpI symp_realrel transp_realrel realrel_refl cauchy_const)


subsection \<open>The field of real numbers\<close>

quotient_type real = "nat \<Rightarrow> rat" / partial: realrel
  morphisms rep_real Real
  by (rule part_equivp_realrel)

lemma cr_real_eq: "pcr_real = (\<lambda>x y. cauchy x \<and> Real x = y)"
  unfolding real.pcr_cr_eq cr_real_def realrel_def by auto

lemma Real_induct [induct type: real]: (* TODO: generate automatically *)
  assumes "\<And>X. cauchy X \<Longrightarrow> P (Real X)"
  shows "P x"
proof (induct x)
  case (1 X)
  then have "cauchy X" by (simp add: realrel_def)
  then show "P (Real X)" by (rule assms)
qed

lemma eq_Real: "cauchy X \<Longrightarrow> cauchy Y \<Longrightarrow> Real X = Real Y \<longleftrightarrow> vanishes (\<lambda>n. X n - Y n)"
  using real.rel_eq_transfer
  unfolding real.pcr_cr_eq cr_real_def rel_fun_def realrel_def by simp

lemma Domainp_pcr_real [transfer_domain_rule]: "Domainp pcr_real = cauchy"
  by (simp add: real.domain_eq realrel_def)

instantiation real :: field
begin

lift_definition zero_real :: "real" is "\<lambda>n. 0"
  by (simp add: realrel_refl)

lift_definition one_real :: "real" is "\<lambda>n. 1"
  by (simp add: realrel_refl)

lift_definition plus_real :: "real \<Rightarrow> real \<Rightarrow> real" is "\<lambda>X Y n. X n + Y n"
  unfolding realrel_def add_diff_add
  by (simp only: cauchy_add vanishes_add simp_thms)

lift_definition uminus_real :: "real \<Rightarrow> real" is "\<lambda>X n. - X n"
  unfolding realrel_def minus_diff_minus
  by (simp only: cauchy_minus vanishes_minus simp_thms)

lift_definition times_real :: "real \<Rightarrow> real \<Rightarrow> real" is "\<lambda>X Y n. X n * Y n"
proof -
  fix f1 f2 f3 f4
  have "\<lbrakk>cauchy f1; cauchy f4; vanishes (\<lambda>n. f1 n - f2 n); vanishes (\<lambda>n. f3 n - f4 n)\<rbrakk>
       \<Longrightarrow> vanishes (\<lambda>n. f1 n * (f3 n - f4 n) + f4 n * (f1 n - f2 n))"
    by (simp add: vanishes_add vanishes_mult_bounded cauchy_imp_bounded)
  then show "\<lbrakk>realrel f1 f2; realrel f3 f4\<rbrakk> \<Longrightarrow> realrel (\<lambda>n. f1 n * f3 n) (\<lambda>n. f2 n * f4 n)"
    by (simp add: mult.commute realrel_def mult_diff_mult)
qed

lift_definition inverse_real :: "real \<Rightarrow> real"
  is "\<lambda>X. if vanishes X then (\<lambda>n. 0) else (\<lambda>n. inverse (X n))"
proof -
  fix X Y
  assume "realrel X Y"
  then have X: "cauchy X" and Y: "cauchy Y" and XY: "vanishes (\<lambda>n. X n - Y n)"
    by (simp_all add: realrel_def)
  have "vanishes X \<longleftrightarrow> vanishes Y"
  proof
    assume "vanishes X"
    from vanishes_diff [OF this XY] show "vanishes Y"
      by simp
  next
    assume "vanishes Y"
    from vanishes_add [OF this XY] show "vanishes X"
      by simp
  qed
  then show "?thesis X Y"
    by (simp add: vanishes_diff_inverse X Y XY realrel_def)
qed

definition "x - y = x + - y" for x y :: real

definition "x div y = x * inverse y" for x y :: real

lemma add_Real: "cauchy X \<Longrightarrow> cauchy Y \<Longrightarrow> Real X + Real Y = Real (\<lambda>n. X n + Y n)"
  using plus_real.transfer by (simp add: cr_real_eq rel_fun_def)

lemma minus_Real: "cauchy X \<Longrightarrow> - Real X = Real (\<lambda>n. - X n)"
  using uminus_real.transfer by (simp add: cr_real_eq rel_fun_def)

lemma diff_Real: "cauchy X \<Longrightarrow> cauchy Y \<Longrightarrow> Real X - Real Y = Real (\<lambda>n. X n - Y n)"
  by (simp add: minus_Real add_Real minus_real_def)

lemma mult_Real: "cauchy X \<Longrightarrow> cauchy Y \<Longrightarrow> Real X * Real Y = Real (\<lambda>n. X n * Y n)"
  using times_real.transfer by (simp add: cr_real_eq rel_fun_def)

lemma inverse_Real:
  "cauchy X \<Longrightarrow> inverse (Real X) = (if vanishes X then 0 else Real (\<lambda>n. inverse (X n)))"
  using inverse_real.transfer zero_real.transfer
  unfolding cr_real_eq rel_fun_def by (simp split: if_split_asm, metis)

instance
proof
  fix a b c :: real
  show "a + b = b + a"
    by transfer (simp add: ac_simps realrel_def)
  show "(a + b) + c = a + (b + c)"
    by transfer (simp add: ac_simps realrel_def)
  show "0 + a = a"
    by transfer (simp add: realrel_def)
  show "- a + a = 0"
    by transfer (simp add: realrel_def)
  show "a - b = a + - b"
    by (rule minus_real_def)
  show "(a * b) * c = a * (b * c)"
    by transfer (simp add: ac_simps realrel_def)
  show "a * b = b * a"
    by transfer (simp add: ac_simps realrel_def)
  show "1 * a = a"
    by transfer (simp add: ac_simps realrel_def)
  show "(a + b) * c = a * c + b * c"
    by transfer (simp add: distrib_right realrel_def)
  show "(0::real) \<noteq> (1::real)"
    by transfer (simp add: realrel_def)
  have "vanishes (\<lambda>n. inverse (X n) * X n - 1)" if X: "cauchy X" "\<not> vanishes X" for X
  proof (rule vanishesI)
    fix r::rat
    assume "0 < r"
    obtain b k where "b>0" "\<forall>n\<ge>k. b < \<bar>X n\<bar>"
      using X cauchy_not_vanishes by blast
    then show "\<exists>k. \<forall>n\<ge>k. \<bar>inverse (X n) * X n - 1\<bar> < r" 
      using \<open>0 < r\<close> by force
  qed
  then show "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1"
    by transfer (simp add: realrel_def)
  show "a div b = a * inverse b"
    by (rule divide_real_def)
  show "inverse (0::real) = 0"
    by transfer (simp add: realrel_def)
qed

end


subsection \<open>Positive reals\<close>

lift_definition positive :: "real \<Rightarrow> bool"
  is "\<lambda>X. \<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n"
proof -
  have 1: "\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < Y n"
    if *: "realrel X Y" and **: "\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n" for X Y
  proof -
    from * have XY: "vanishes (\<lambda>n. X n - Y n)"
      by (simp_all add: realrel_def)
    from ** obtain r i where "0 < r" and i: "\<forall>n\<ge>i. r < X n"
      by blast
    obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t"
      using \<open>0 < r\<close> by (rule obtain_pos_sum)
    obtain j where j: "\<forall>n\<ge>j. \<bar>X n - Y n\<bar> < s"
      using vanishesD [OF XY s] ..
    have "\<forall>n\<ge>max i j. t < Y n"
    proof clarsimp
      fix n
      assume n: "i \<le> n" "j \<le> n"
      have "\<bar>X n - Y n\<bar> < s" and "r < X n"
        using i j n by simp_all
      then show "t < Y n" by (simp add: r)
    qed
    then show ?thesis using t by blast
  qed
  fix X Y assume "realrel X Y"
  then have "realrel X Y" and "realrel Y X"
    using symp_realrel by (auto simp: symp_def)
  then show "?thesis X Y"
    by (safe elim!: 1)
qed

lemma positive_Real: "cauchy X \<Longrightarrow> positive (Real X) \<longleftrightarrow> (\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n)"
  using positive.transfer by (simp add: cr_real_eq rel_fun_def)

lemma positive_zero: "\<not> positive 0"
  by transfer auto

lemma positive_add: 
  assumes "positive x" "positive y" shows "positive (x + y)"
proof -
  have *: "\<lbrakk>\<forall>n\<ge>i. a < x n; \<forall>n\<ge>j. b < y n; 0 < a; 0 < b; n \<ge> max i j\<rbrakk>
       \<Longrightarrow> a+b < x n + y n" for x y and a b::rat and i j n::nat
    by (simp add: add_strict_mono)
  show ?thesis
    using assms
    by transfer (blast intro: * pos_add_strict)
qed

lemma positive_mult: 
  assumes "positive x" "positive y" shows "positive (x * y)"
proof -
  have *: "\<lbrakk>\<forall>n\<ge>i. a < x n; \<forall>n\<ge>j. b < y n; 0 < a; 0 < b; n \<ge> max i j\<rbrakk>
       \<Longrightarrow> a*b < x n * y n" for x y and a b::rat and i j n::nat
    by (simp add: mult_strict_mono')
  show ?thesis
    using assms
    by transfer (blast intro: *  mult_pos_pos)
qed

lemma positive_minus: "\<not> positive x \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> positive (- x)"
  apply transfer
  apply (simp add: realrel_def)
  apply (blast dest: cauchy_not_vanishes_cases)
  done

instantiation real :: linordered_field
begin

definition "x < y \<longleftrightarrow> positive (y - x)"

definition "x \<le> y \<longleftrightarrow> x < y \<or> x = y" for x y :: real

definition "\<bar>a\<bar> = (if a < 0 then - a else a)" for a :: real

definition "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)" for a :: real

instance
proof
  fix a b c :: real
  show "\<bar>a\<bar> = (if a < 0 then - a else a)"
    by (rule abs_real_def)
  show "a < b \<longleftrightarrow> a \<le> b \<and> \<not> b \<le> a"
       "a \<le> b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c"  "a \<le> a" 
       "a \<le> b \<Longrightarrow> b \<le> a \<Longrightarrow> a = b"
       "a \<le> b \<Longrightarrow> c + a \<le> c + b"
    unfolding less_eq_real_def less_real_def
    by (force simp add: positive_zero dest: positive_add)+
  show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)"
    by (rule sgn_real_def)
  show "a \<le> b \<or> b \<le> a"
    by (auto dest!: positive_minus simp: less_eq_real_def less_real_def)
  show "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
    unfolding less_real_def
    by (force simp add: algebra_simps dest: positive_mult)
qed

end

instantiation real :: distrib_lattice
begin

definition "(inf :: real \<Rightarrow> real \<Rightarrow> real) = min"

definition "(sup :: real \<Rightarrow> real \<Rightarrow> real) = max"

instance
  by standard (auto simp add: inf_real_def sup_real_def max_min_distrib2)

end

lemma of_nat_Real: "of_nat x = Real (\<lambda>n. of_nat x)"
  by (induct x) (simp_all add: zero_real_def one_real_def add_Real)

lemma of_int_Real: "of_int x = Real (\<lambda>n. of_int x)"
  by (cases x rule: int_diff_cases) (simp add: of_nat_Real diff_Real)

lemma of_rat_Real: "of_rat x = Real (\<lambda>n. x)"
proof (induct x)
  case (Fract a b)
  then show ?case 
  apply (simp add: Fract_of_int_quotient of_rat_divide)
  apply (simp add: of_int_Real divide_inverse inverse_Real mult_Real)
  done
qed

instance real :: archimedean_field
proof
  show "\<exists>z. x \<le> of_int z" for x :: real
  proof (induct x)
    case (1 X)
    then obtain b where "0 < b" and b: "\<And>n. \<bar>X n\<bar> < b"
      by (blast dest: cauchy_imp_bounded)
    then have "Real X < of_int (\<lceil>b\<rceil> + 1)"
      using 1
      apply (simp add: of_int_Real less_real_def diff_Real positive_Real)
      apply (rule_tac x=1 in exI)
      apply (simp add: algebra_simps)
      by (metis abs_ge_self le_less_trans le_of_int_ceiling less_le)
    then show ?case
      using less_eq_real_def by blast 
  qed
qed

instantiation real :: floor_ceiling
begin

definition [code del]: "\<lfloor>x::real\<rfloor> = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))"

instance
proof
  show "of_int \<lfloor>x\<rfloor> \<le> x \<and> x < of_int (\<lfloor>x\<rfloor> + 1)" for x :: real
    unfolding floor_real_def using floor_exists1 by (rule theI')
qed

end


subsection \<open>Completeness\<close>

lemma not_positive_Real: 
  assumes "cauchy X" shows "\<not> positive (Real X) \<longleftrightarrow> (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. X n \<le> r)" (is "?lhs = ?rhs")
  unfolding positive_Real [OF assms]
proof (intro iffI allI notI impI)
  show "\<exists>k. \<forall>n\<ge>k. X n \<le> r" if r: "\<not> (\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n)" and "0 < r" for r
  proof -
    obtain s t where "s > 0" "t > 0" "r = s+t"
      using \<open>r > 0\<close> obtain_pos_sum by blast
    obtain k where k: "\<And>m n. \<lbrakk>m\<ge>k; n\<ge>k\<rbrakk> \<Longrightarrow> \<bar>X m - X n\<bar> < t"
      using cauchyD [OF assms \<open>t > 0\<close>] by blast
    obtain n where "n \<ge> k" "X n \<le> s"
      by (meson r \<open>0 < s\<close> not_less)
    then have "X l \<le> r" if "l \<ge> n" for l
      using k [OF \<open>n \<ge> k\<close>, of l] that \<open>r = s+t\<close> by linarith
    then show ?thesis
      by blast
    qed
qed (meson le_cases not_le)

lemma le_Real:
  assumes "cauchy X" "cauchy Y"
  shows "Real X \<le> Real Y = (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. X n \<le> Y n + r)"
  unfolding not_less [symmetric, where 'a=real] less_real_def
  apply (simp add: diff_Real not_positive_Real assms)
  apply (simp add: diff_le_eq ac_simps)
  done

lemma le_RealI:
  assumes Y: "cauchy Y"
  shows "\<forall>n. x \<le> of_rat (Y n) \<Longrightarrow> x \<le> Real Y"
proof (induct x)
  fix X
  assume X: "cauchy X" and "\<forall>n. Real X \<le> of_rat (Y n)"
  then have le: "\<And>m r. 0 < r \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. X n \<le> Y m + r"
    by (simp add: of_rat_Real le_Real)
  then have "\<exists>k. \<forall>n\<ge>k. X n \<le> Y n + r" if "0 < r" for r :: rat
  proof -
    from that obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t"
      by (rule obtain_pos_sum)
    obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>Y m - Y n\<bar> < s"
      using cauchyD [OF Y s] ..
    obtain j where j: "\<forall>n\<ge>j. X n \<le> Y i + t"
      using le [OF t] ..
    have "\<forall>n\<ge>max i j. X n \<le> Y n + r"
    proof clarsimp
      fix n
      assume n: "i \<le> n" "j \<le> n"
      have "X n \<le> Y i + t"
        using n j by simp
      moreover have "\<bar>Y i - Y n\<bar> < s"
        using n i by simp
      ultimately show "X n \<le> Y n + r"
        unfolding r by simp
    qed
    then show ?thesis ..
  qed
  then show "Real X \<le> Real Y"
    by (simp add: of_rat_Real le_Real X Y)
qed

lemma Real_leI:
  assumes X: "cauchy X"
  assumes le: "\<forall>n. of_rat (X n) \<le> y"
  shows "Real X \<le> y"
proof -
  have "- y \<le> - Real X"
    by (simp add: minus_Real X le_RealI of_rat_minus le)
  then show ?thesis by simp
qed

lemma less_RealD:
  assumes "cauchy Y"
  shows "x < Real Y \<Longrightarrow> \<exists>n. x < of_rat (Y n)"
  apply (erule contrapos_pp)
  apply (simp add: not_less)
  apply (erule Real_leI [OF assms])
  done

lemma of_nat_less_two_power [simp]: "of_nat n < (2::'a::linordered_idom) ^ n"
  apply (induct n)
   apply simp
  apply (metis add_le_less_mono mult_2 of_nat_Suc one_le_numeral one_le_power power_Suc)
  done

lemma complete_real:
  fixes S :: "real set"
  assumes "\<exists>x. x \<in> S" and "\<exists>z. \<forall>x\<in>S. x \<le> z"
  shows "\<exists>y. (\<forall>x\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> y \<le> z)"
proof -
  obtain x where x: "x \<in> S" using assms(1) ..
  obtain z where z: "\<forall>x\<in>S. x \<le> z" using assms(2) ..

  define P where "P x \<longleftrightarrow> (\<forall>y\<in>S. y \<le> of_rat x)" for x
  obtain a where a: "\<not> P a"
  proof
    have "of_int \<lfloor>x - 1\<rfloor> \<le> x - 1" by (rule of_int_floor_le)
    also have "x - 1 < x" by simp
    finally have "of_int \<lfloor>x - 1\<rfloor> < x" .
    then have "\<not> x \<le> of_int \<lfloor>x - 1\<rfloor>" by (simp only: not_le)
    then show "\<not> P (of_int \<lfloor>x - 1\<rfloor>)"
      unfolding P_def of_rat_of_int_eq using x by blast
  qed
  obtain b where b: "P b"
  proof
    show "P (of_int \<lceil>z\<rceil>)"
    unfolding P_def of_rat_of_int_eq
    proof
      fix y assume "y \<in> S"
      then have "y \<le> z" using z by simp
      also have "z \<le> of_int \<lceil>z\<rceil>" by (rule le_of_int_ceiling)
      finally show "y \<le> of_int \<lceil>z\<rceil>" .
    qed
  qed

  define avg where "avg x y = x/2 + y/2" for x y :: rat
  define bisect where "bisect = (\<lambda>(x, y). if P (avg x y) then (x, avg x y) else (avg x y, y))"
  define A where "A n = fst ((bisect ^^ n) (a, b))" for n
  define B where "B n = snd ((bisect ^^ n) (a, b))" for n
  define C where "C n = avg (A n) (B n)" for n
  have A_0 [simp]: "A 0 = a" unfolding A_def by simp
  have B_0 [simp]: "B 0 = b" unfolding B_def by simp
  have A_Suc [simp]: "\<And>n. A (Suc n) = (if P (C n) then A n else C n)"
    unfolding A_def B_def C_def bisect_def split_def by simp
  have B_Suc [simp]: "\<And>n. B (Suc n) = (if P (C n) then C n else B n)"
    unfolding A_def B_def C_def bisect_def split_def by simp

  have width: "B n - A n = (b - a) / 2^n" for n
  proof (induct n)
    case (Suc n)
    then show ?case
      by (simp add: C_def eq_divide_eq avg_def algebra_simps)
  qed simp
  have twos: "\<exists>n. y / 2 ^ n < r" if "0 < r" for y r :: rat
  proof -
    obtain n where "y / r < rat_of_nat n"
      using \<open>0 < r\<close> reals_Archimedean2 by blast
    then have "\<exists>n. y < r * 2 ^ n"
      by (metis divide_less_eq less_trans mult.commute of_nat_less_two_power that)
    then show ?thesis
      by (simp add: field_split_simps)
  qed
  have PA: "\<not> P (A n)" for n
    by (induct n) (simp_all add: a)
  have PB: "P (B n)" for n
    by (induct n) (simp_all add: b)
  have ab: "a < b"
    using a b unfolding P_def
    by (meson leI less_le_trans of_rat_less)
  have AB: "A n < B n" for n
    by (induct n) (simp_all add: ab C_def avg_def)
  have  "A i \<le> A j \<and>  B j \<le> B i" if "i < j" for i j
    using that
  proof (induction rule: less_Suc_induct)
    case (1 i)
    then show ?case
      apply (clarsimp simp add: C_def avg_def add_divide_distrib [symmetric])
      apply (rule AB [THEN less_imp_le])
      done  
  qed simp
  then have A_mono: "A i \<le> A j" and B_mono: "B j \<le> B i" if "i \<le> j" for i j
    by (metis eq_refl le_neq_implies_less that)+
  have cauchy_lemma: "cauchy X" if *: "\<And>n i. i\<ge>n \<Longrightarrow> A n \<le> X i \<and> X i \<le> B n" for X
  proof (rule cauchyI)
    fix r::rat
    assume "0 < r"
    then obtain k where k: "(b - a) / 2 ^ k < r"
      using twos by blast
    have "\<bar>X m - X n\<bar> < r" if "m\<ge>k" "n\<ge>k" for m n
    proof -
      have "\<bar>X m - X n\<bar> \<le> B k - A k"
        by (simp add: * abs_rat_def diff_mono that)
      also have "... < r"
        by (simp add: k width)
      finally show ?thesis .
    qed
    then show "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r"
      by blast 
  qed
  have "cauchy A"
    by (rule cauchy_lemma) (meson AB A_mono B_mono dual_order.strict_implies_order less_le_trans)
  have "cauchy B"
    by (rule cauchy_lemma) (meson AB A_mono B_mono dual_order.strict_implies_order le_less_trans)
  have "\<forall>x\<in>S. x \<le> Real B"
  proof
    fix x
    assume "x \<in> S"
    then show "x \<le> Real B"
      using PB [unfolded P_def] \<open>cauchy B\<close>
      by (simp add: le_RealI)
  qed
  moreover have "\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> Real A \<le> z"
    by (meson PA Real_leI P_def \<open>cauchy A\<close> le_cases order.trans)
  moreover have "vanishes (\<lambda>n. (b - a) / 2 ^ n)"
  proof (rule vanishesI)
    fix r :: rat
    assume "0 < r"
    then obtain k where k: "\<bar>b - a\<bar> / 2 ^ k < r"
      using twos by blast
    have "\<forall>n\<ge>k. \<bar>(b - a) / 2 ^ n\<bar> < r"
    proof clarify
      fix n
      assume n: "k \<le> n"
      have "\<bar>(b - a) / 2 ^ n\<bar> = \<bar>b - a\<bar> / 2 ^ n"
        by simp
      also have "\<dots> \<le> \<bar>b - a\<bar> / 2 ^ k"
        using n by (simp add: divide_left_mono)
      also note k
      finally show "\<bar>(b - a) / 2 ^ n\<bar> < r" .
    qed
    then show "\<exists>k. \<forall>n\<ge>k. \<bar>(b - a) / 2 ^ n\<bar> < r" ..
  qed
  then have "Real B = Real A"
    by (simp add: eq_Real \<open>cauchy A\<close> \<open>cauchy B\<close> width)
  ultimately show "\<exists>y. (\<forall>x\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> y \<le> z)"
    by force
qed

instantiation real :: linear_continuum
begin

subsection \<open>Supremum of a set of reals\<close>

definition "Sup X = (LEAST z::real. \<forall>x\<in>X. x \<le> z)"
definition "Inf X = - Sup (uminus ` X)" for X :: "real set"

instance
proof
  show Sup_upper: "x \<le> Sup X"
    if "x \<in> X" "bdd_above X"
    for x :: real and X :: "real set"
  proof -
    from that obtain s where s: "\<forall>y\<in>X. y \<le> s" "\<And>z. \<forall>y\<in>X. y \<le> z \<Longrightarrow> s \<le> z"
      using complete_real[of X] unfolding bdd_above_def by blast
    then show ?thesis
      unfolding Sup_real_def by (rule LeastI2_order) (auto simp: that)
  qed
  show Sup_least: "Sup X \<le> z"
    if "X \<noteq> {}" and z: "\<And>x. x \<in> X \<Longrightarrow> x \<le> z"
    for z :: real and X :: "real set"
  proof -
    from that obtain s where s: "\<forall>y\<in>X. y \<le> s" "\<And>z. \<forall>y\<in>X. y \<le> z \<Longrightarrow> s \<le> z"
      using complete_real [of X] by blast
    then have "Sup X = s"
      unfolding Sup_real_def by (best intro: Least_equality)
    also from s z have "\<dots> \<le> z"
      by blast
    finally show ?thesis .
  qed
  show "Inf X \<le> x" if "x \<in> X" "bdd_below X"
    for x :: real and X :: "real set"
    using Sup_upper [of "-x" "uminus ` X"] by (auto simp: Inf_real_def that)
  show "z \<le> Inf X" if "X \<noteq> {}" "\<And>x. x \<in> X \<Longrightarrow> z \<le> x"
    for z :: real and X :: "real set"
    using Sup_least [of "uminus ` X" "- z"] by (force simp: Inf_real_def that)
  show "\<exists>a b::real. a \<noteq> b"
    using zero_neq_one by blast
qed

end


subsection \<open>Hiding implementation details\<close>

hide_const (open) vanishes cauchy positive Real

declare Real_induct [induct del]
declare Abs_real_induct [induct del]
declare Abs_real_cases [cases del]

lifting_update real.lifting
lifting_forget real.lifting


subsection \<open>Embedding numbers into the Reals\<close>

abbreviation real_of_nat :: "nat \<Rightarrow> real"
  where "real_of_nat \<equiv> of_nat"

abbreviation real :: "nat \<Rightarrow> real"
  where "real \<equiv> of_nat"

abbreviation real_of_int :: "int \<Rightarrow> real"
  where "real_of_int \<equiv> of_int"

abbreviation real_of_rat :: "rat \<Rightarrow> real"
  where "real_of_rat \<equiv> of_rat"

declare [[coercion_enabled]]

declare [[coercion "of_nat :: nat \<Rightarrow> int"]]
declare [[coercion "of_nat :: nat \<Rightarrow> real"]]
declare [[coercion "of_int :: int \<Rightarrow> real"]]

(* We do not add rat to the coerced types, this has often unpleasant side effects when writing
inverse (Suc n) which sometimes gets two coercions: of_rat (inverse (of_nat (Suc n))) *)

declare [[coercion_map map]]
declare [[coercion_map "\<lambda>f g h x. g (h (f x))"]]
declare [[coercion_map "\<lambda>f g (x,y). (f x, g y)"]]

declare of_int_eq_0_iff [algebra, presburger]
declare of_int_eq_1_iff [algebra, presburger]
declare of_int_eq_iff [algebra, presburger]
declare of_int_less_0_iff [algebra, presburger]
declare of_int_less_1_iff [algebra, presburger]
declare of_int_less_iff [algebra, presburger]
declare of_int_le_0_iff [algebra, presburger]
declare of_int_le_1_iff [algebra, presburger]
declare of_int_le_iff [algebra, presburger]
declare of_int_0_less_iff [algebra, presburger]
declare of_int_0_le_iff [algebra, presburger]
declare of_int_1_less_iff [algebra, presburger]
declare of_int_1_le_iff [algebra, presburger]

lemma int_less_real_le: "n < m \<longleftrightarrow> real_of_int n + 1 \<le> real_of_int m"
proof -
  have "(0::real) \<le> 1"
    by (metis less_eq_real_def zero_less_one)
  then show ?thesis
    by (metis floor_of_int less_floor_iff)
qed

lemma int_le_real_less: "n \<le> m \<longleftrightarrow> real_of_int n < real_of_int m + 1"
  by (meson int_less_real_le not_le)

lemma real_of_int_div_aux:
  "(real_of_int x) / (real_of_int d) =
    real_of_int (x div d) + (real_of_int (x mod d)) / (real_of_int d)"
proof -
  have "x = (x div d) * d + x mod d"
    by auto
  then have "real_of_int x = real_of_int (x div d) * real_of_int d + real_of_int(x mod d)"
    by (metis of_int_add of_int_mult)
  then have "real_of_int x / real_of_int d = \<dots> / real_of_int d"
    by simp
  then show ?thesis
    by (auto simp add: add_divide_distrib algebra_simps)
qed

lemma real_of_int_div:
  "d dvd n \<Longrightarrow> real_of_int (n div d) = real_of_int n / real_of_int d" for d n :: int
  by (simp add: real_of_int_div_aux)

lemma real_of_int_div2: "0 \<le> real_of_int n / real_of_int x - real_of_int (n div x)"
proof (cases "x = 0")
  case False
  then show ?thesis
    by (metis diff_ge_0_iff_ge floor_divide_of_int_eq of_int_floor_le)
qed simp

lemma real_of_int_div3: "real_of_int n / real_of_int x - real_of_int (n div x) \<le> 1"
  apply (simp add: algebra_simps)
  by (metis add.commute floor_correct floor_divide_of_int_eq less_eq_real_def of_int_1 of_int_add)

lemma real_of_int_div4: "real_of_int (n div x) \<le> real_of_int n / real_of_int x"
  using real_of_int_div2 [of n x] by simp


subsection \<open>Embedding the Naturals into the Reals\<close>

lemma real_of_card: "real (card A) = sum (\<lambda>x. 1) A"
  by simp

lemma nat_less_real_le: "n < m \<longleftrightarrow> real n + 1 \<le> real m"
  by (metis discrete of_nat_1 of_nat_add of_nat_le_iff)

lemma nat_le_real_less: "n \<le> m \<longleftrightarrow> real n < real m + 1"
  for m n :: nat
  by (meson nat_less_real_le not_le)

lemma real_of_nat_div_aux: "real x / real d = real (x div d) + real (x mod d) / real d"
proof -
  have "x = (x div d) * d + x mod d"
    by auto
  then have "real x = real (x div d) * real d + real(x mod d)"
    by (metis of_nat_add of_nat_mult)
  then have "real x / real d = \<dots> / real d"
    by simp
  then show ?thesis
    by (auto simp add: add_divide_distrib algebra_simps)
qed

lemma real_of_nat_div: "d dvd n \<Longrightarrow> real(n div d) = real n / real d"
  by (subst real_of_nat_div_aux) (auto simp add: dvd_eq_mod_eq_0 [symmetric])

lemma real_of_nat_div2: "0 \<le> real n / real x - real (n div x)" for n x :: nat
  apply (simp add: algebra_simps)
  by (metis floor_divide_of_nat_eq of_int_floor_le of_int_of_nat_eq)

lemma real_of_nat_div3: "real n / real x - real (n div x) \<le> 1" for n x :: nat
proof (cases "x = 0")
  case False
  then show ?thesis
    by (metis of_int_of_nat_eq real_of_int_div3 zdiv_int)
qed auto

lemma real_of_nat_div4: "real (n div x) \<le> real n / real x" for n x :: nat
  using real_of_nat_div2 [of n x] by simp

lemma real_binomial_eq_mult_binomial_Suc:
  assumes "k \<le> n"
  shows "real(n choose k) = (n + 1 - k) / (n + 1) * (Suc n choose k)"
  using assms
  by (simp add: of_nat_binomial_eq_mult_binomial_Suc [of k n] add.commute of_nat_diff)


subsection \<open>The Archimedean Property of the Reals\<close>

lemma real_arch_inverse: "0 < e \<longleftrightarrow> (\<exists>n::nat. n \<noteq> 0 \<and> 0 < inverse (real n) \<and> inverse (real n) < e)"
  using reals_Archimedean[of e] less_trans[of 0 "1 / real n" e for n::nat]
  by (auto simp add: field_simps cong: conj_cong simp del: of_nat_Suc)

lemma reals_Archimedean3: "0 < x \<Longrightarrow> \<forall>y. \<exists>n. y < real n * x"
  by (auto intro: ex_less_of_nat_mult)

lemma real_archimedian_rdiv_eq_0:
  assumes x0: "x \<ge> 0"
    and c: "c \<ge> 0"
    and xc: "\<And>m::nat. m > 0 \<Longrightarrow> real m * x \<le> c"
  shows "x = 0"
  by (metis reals_Archimedean3 dual_order.order_iff_strict le0 le_less_trans not_le x0 xc)


subsection \<open>Rationals\<close>

lemma Rats_abs_iff[simp]:
  "\<bar>(x::real)\<bar> \<in> \<rat> \<longleftrightarrow> x \<in> \<rat>"
by(simp add: abs_real_def split: if_splits)

lemma Rats_eq_int_div_int: "\<rat> = {real_of_int i / real_of_int j | i j. j \<noteq> 0}"  (is "_ = ?S")
proof
  show "\<rat> \<subseteq> ?S"
  proof
    fix x :: real
    assume "x \<in> \<rat>"
    then obtain r where "x = of_rat r"
      unfolding Rats_def ..
    have "of_rat r \<in> ?S"
      by (cases r) (auto simp add: of_rat_rat)
    then show "x \<in> ?S"
      using \<open>x = of_rat r\<close> by simp
  qed
next
  show "?S \<subseteq> \<rat>"
  proof (auto simp: Rats_def)
    fix i j :: int
    assume "j \<noteq> 0"
    then have "real_of_int i / real_of_int j = of_rat (Fract i j)"
      by (simp add: of_rat_rat)
    then show "real_of_int i / real_of_int j \<in> range of_rat"
      by blast
  qed
qed

lemma Rats_eq_int_div_nat: "\<rat> = { real_of_int i / real n | i n. n \<noteq> 0}"
proof (auto simp: Rats_eq_int_div_int)
  fix i j :: int
  assume "j \<noteq> 0"
  show "\<exists>(i'::int) (n::nat). real_of_int i / real_of_int j = real_of_int i' / real n \<and> 0 < n"
  proof (cases "j > 0")
    case True
    then have "real_of_int i / real_of_int j = real_of_int i / real (nat j) \<and> 0 < nat j"
      by simp
    then show ?thesis by blast
  next
    case False
    with \<open>j \<noteq> 0\<close>
    have "real_of_int i / real_of_int j = real_of_int (- i) / real (nat (- j)) \<and> 0 < nat (- j)"
      by simp
    then show ?thesis by blast
  qed
next
  fix i :: int and n :: nat
  assume "0 < n"
  then have "real_of_int i / real n = real_of_int i / real_of_int(int n) \<and> int n \<noteq> 0"
    by simp
  then show "\<exists>i' j. real_of_int i / real n = real_of_int i' / real_of_int j \<and> j \<noteq> 0"
    by blast
qed

lemma Rats_abs_nat_div_natE:
  assumes "x \<in> \<rat>"
  obtains m n :: nat where "n \<noteq> 0" and "\<bar>x\<bar> = real m / real n" and "coprime m n"
proof -
  from \<open>x \<in> \<rat>\<close> obtain i :: int and n :: nat where "n \<noteq> 0" and "x = real_of_int i / real n"
    by (auto simp add: Rats_eq_int_div_nat)
  then have "\<bar>x\<bar> = real (nat \<bar>i\<bar>) / real n" by simp
  then obtain m :: nat where x_rat: "\<bar>x\<bar> = real m / real n" by blast
  let ?gcd = "gcd m n"
  from \<open>n \<noteq> 0\<close> have gcd: "?gcd \<noteq> 0" by simp
  let ?k = "m div ?gcd"
  let ?l = "n div ?gcd"
  let ?gcd' = "gcd ?k ?l"
  have "?gcd dvd m" ..
  then have gcd_k: "?gcd * ?k = m"
    by (rule dvd_mult_div_cancel)
  have "?gcd dvd n" ..
  then have gcd_l: "?gcd * ?l = n"
    by (rule dvd_mult_div_cancel)
  from \<open>n \<noteq> 0\<close> and gcd_l have "?gcd * ?l \<noteq> 0" by simp
  then have "?l \<noteq> 0" by (blast dest!: mult_not_zero)
  moreover
  have "\<bar>x\<bar> = real ?k / real ?l"
  proof -
    from gcd have "real ?k / real ?l = real (?gcd * ?k) / real (?gcd * ?l)"
      by (simp add: real_of_nat_div)
    also from gcd_k and gcd_l have "\<dots> = real m / real n" by simp
    also from x_rat have "\<dots> = \<bar>x\<bar>" ..
    finally show ?thesis ..
  qed
  moreover
  have "?gcd' = 1"
  proof -
    have "?gcd * ?gcd' = gcd (?gcd * ?k) (?gcd * ?l)"
      by (rule gcd_mult_distrib_nat)
    with gcd_k gcd_l have "?gcd * ?gcd' = ?gcd" by simp
    with gcd show ?thesis by auto
  qed
  then have "coprime ?k ?l"
    by (simp only: coprime_iff_gcd_eq_1)
  ultimately show ?thesis ..
qed


subsection \<open>Density of the Rational Reals in the Reals\<close>

text \<open>
  This density proof is due to Stefan Richter and was ported by TN.  The
  original source is \<^emph>\<open>Real Analysis\<close> by H.L. Royden.
  It employs the Archimedean property of the reals.\<close>

lemma Rats_dense_in_real:
  fixes x :: real
  assumes "x < y"
  shows "\<exists>r\<in>\<rat>. x < r \<and> r < y"
proof -
  from \<open>x < y\<close> have "0 < y - x" by simp
  with reals_Archimedean obtain q :: nat where q: "inverse (real q) < y - x" and "0 < q"
    by blast
  define p where "p = \<lceil>y * real q\<rceil> - 1"
  define r where "r = of_int p / real q"
  from q have "x < y - inverse (real q)"
    by simp
  also from \<open>0 < q\<close> have "y - inverse (real q) \<le> r"
    by (simp add: r_def p_def le_divide_eq left_diff_distrib)
  finally have "x < r" .
  moreover from \<open>0 < q\<close> have "r < y"
    by (simp add: r_def p_def divide_less_eq diff_less_eq less_ceiling_iff [symmetric])
  moreover have "r \<in> \<rat>"
    by (simp add: r_def)
  ultimately show ?thesis by blast
qed

lemma of_rat_dense:
  fixes x y :: real
  assumes "x < y"
  shows "\<exists>q :: rat. x < of_rat q \<and> of_rat q < y"
  using Rats_dense_in_real [OF \<open>x < y\<close>]
  by (auto elim: Rats_cases)


subsection \<open>Numerals and Arithmetic\<close>

declaration \<open>
  K (Lin_Arith.add_inj_const (\<^const_name>\<open>of_nat\<close>, \<^typ>\<open>nat \<Rightarrow> real\<close>)
  #> Lin_Arith.add_inj_const (\<^const_name>\<open>of_int\<close>, \<^typ>\<open>int \<Rightarrow> real\<close>))
\<close>


subsection \<open>Simprules combining \<open>x + y\<close> and \<open>0\<close>\<close> (* FIXME ARE THEY NEEDED? *)

lemma real_add_minus_iff [simp]: "x + - a = 0 \<longleftrightarrow> x = a"
  for x a :: real
  by arith

lemma real_add_less_0_iff: "x + y < 0 \<longleftrightarrow> y < - x"
  for x y :: real
  by auto

lemma real_0_less_add_iff: "0 < x + y \<longleftrightarrow> - x < y"
  for x y :: real
  by auto

lemma real_add_le_0_iff: "x + y \<le> 0 \<longleftrightarrow> y \<le> - x"
  for x y :: real
  by auto

lemma real_0_le_add_iff: "0 \<le> x + y \<longleftrightarrow> - x \<le> y"
  for x y :: real
  by auto


subsection \<open>Lemmas about powers\<close>

lemma two_realpow_ge_one: "(1::real) \<le> 2 ^ n"
  by simp

(* FIXME: declare this [simp] for all types, or not at all *)
declare sum_squares_eq_zero_iff [simp] sum_power2_eq_zero_iff [simp]

lemma real_minus_mult_self_le [simp]: "- (u * u) \<le> x * x"
  for u x :: real
  by (rule order_trans [where y = 0]) auto

lemma realpow_square_minus_le [simp]: "- u\<^sup>2 \<le> x\<^sup>2"
  for u x :: real
  by (auto simp add: power2_eq_square)


subsection \<open>Density of the Reals\<close>

lemma field_lbound_gt_zero: "0 < d1 \<Longrightarrow> 0 < d2 \<Longrightarrow> \<exists>e. 0 < e \<and> e < d1 \<and> e < d2"
  for d1 d2 :: "'a::linordered_field"
  by (rule exI [where x = "min d1 d2 / 2"]) (simp add: min_def)

lemma field_less_half_sum: "x < y \<Longrightarrow> x < (x + y) / 2"
  for x y :: "'a::linordered_field"
  by auto

lemma field_sum_of_halves: "x / 2 + x / 2 = x"
  for x :: "'a::linordered_field"
  by simp


subsection \<open>Archimedean properties and useful consequences\<close>

text\<open>Bernoulli's inequality\<close>
proposition Bernoulli_inequality:
  fixes x :: real
  assumes "-1 \<le> x"
    shows "1 + n * x \<le> (1 + x) ^ n"
proof (induct n)
  case 0
  then show ?case by simp
next
  case (Suc n)
  have "1 + Suc n * x \<le> 1 + (Suc n)*x + n * x^2"
    by (simp add: algebra_simps)
  also have "... = (1 + x) * (1 + n*x)"
    by (auto simp: power2_eq_square algebra_simps)
  also have "... \<le> (1 + x) ^ Suc n"
    using Suc.hyps assms mult_left_mono by fastforce
  finally show ?case .
qed

corollary Bernoulli_inequality_even:
  fixes x :: real
  assumes "even n"
    shows "1 + n * x \<le> (1 + x) ^ n"
proof (cases "-1 \<le> x \<or> n=0")
  case True
  then show ?thesis
    by (auto simp: Bernoulli_inequality)
next
  case False
  then have "real n \<ge> 1"
    by simp
  with False have "n * x \<le> -1"
    by (metis linear minus_zero mult.commute mult.left_neutral mult_left_mono_neg neg_le_iff_le order_trans zero_le_one)
  then have "1 + n * x \<le> 0"
    by auto
  also have "... \<le> (1 + x) ^ n"
    using assms
    using zero_le_even_power by blast
  finally show ?thesis .
qed

corollary real_arch_pow:
  fixes x :: real
  assumes x: "1 < x"
  shows "\<exists>n. y < x^n"
proof -
  from x have x0: "x - 1 > 0"
    by arith
  from reals_Archimedean3[OF x0, rule_format, of y]
  obtain n :: nat where n: "y < real n * (x - 1)" by metis
  from x0 have x00: "x- 1 \<ge> -1" by arith
  from Bernoulli_inequality[OF x00, of n] n
  have "y < x^n" by auto
  then show ?thesis by metis
qed

corollary real_arch_pow_inv:
  fixes x y :: real
  assumes y: "y > 0"
    and x1: "x < 1"
  shows "\<exists>n. x^n < y"
proof (cases "x > 0")
  case True
  with x1 have ix: "1 < 1/x" by (simp add: field_simps)
  from real_arch_pow[OF ix, of "1/y"]
  obtain n where n: "1/y < (1/x)^n" by blast
  then show ?thesis using y \<open>x > 0\<close>
    by (auto simp add: field_simps)
next
  case False
  with y x1 show ?thesis
    by (metis less_le_trans not_less power_one_right)
qed

lemma forall_pos_mono:
  "(\<And>d e::real. d < e \<Longrightarrow> P d \<Longrightarrow> P e) \<Longrightarrow>
    (\<And>n::nat. n \<noteq> 0 \<Longrightarrow> P (inverse (real n))) \<Longrightarrow> (\<And>e. 0 < e \<Longrightarrow> P e)"
  by (metis real_arch_inverse)

lemma forall_pos_mono_1:
  "(\<And>d e::real. d < e \<Longrightarrow> P d \<Longrightarrow> P e) \<Longrightarrow>
    (\<And>n. P (inverse (real (Suc n)))) \<Longrightarrow> 0 < e \<Longrightarrow> P e"
  apply (rule forall_pos_mono)
  apply auto
  apply (metis Suc_pred of_nat_Suc)
  done


subsection \<open>Floor and Ceiling Functions from the Reals to the Integers\<close>

(* FIXME: theorems for negative numerals. Many duplicates, e.g. from Archimedean_Field.thy. *)

lemma real_of_nat_less_numeral_iff [simp]: "real n < numeral w \<longleftrightarrow> n < numeral w"
  for n :: nat
  by (metis of_nat_less_iff of_nat_numeral)

lemma numeral_less_real_of_nat_iff [simp]: "numeral w < real n \<longleftrightarrow> numeral w < n"
  for n :: nat
  by (metis of_nat_less_iff of_nat_numeral)

lemma numeral_le_real_of_nat_iff [simp]: "numeral n \<le> real m \<longleftrightarrow> numeral n \<le> m"
  for m :: nat
  by (metis not_le real_of_nat_less_numeral_iff)

lemma of_int_floor_cancel [simp]: "of_int \<lfloor>x\<rfloor> = x \<longleftrightarrow> (\<exists>n::int. x = of_int n)"
  by (metis floor_of_int)

lemma of_int_floor [simp]: "a \<in> \<int> \<Longrightarrow> of_int (floor a) = a"
  by (metis Ints_cases of_int_floor_cancel) 

lemma floor_frac [simp]: "\<lfloor>frac r\<rfloor> = 0"
  by (simp add: frac_def)

lemma frac_1 [simp]: "frac 1 = 0"
  by (simp add: frac_def)

lemma frac_in_Rats_iff [simp]:
  fixes r::"'a::{floor_ceiling,field_char_0}"
  shows "frac r \<in> \<rat> \<longleftrightarrow> r \<in> \<rat>"
  by (metis Rats_add Rats_diff Rats_of_int diff_add_cancel frac_def)

lemma floor_eq: "real_of_int n < x \<Longrightarrow> x < real_of_int n + 1 \<Longrightarrow> \<lfloor>x\<rfloor> = n"
  by linarith

lemma floor_eq2: "real_of_int n \<le> x \<Longrightarrow> x < real_of_int n + 1 \<Longrightarrow> \<lfloor>x\<rfloor> = n"
  by (fact floor_unique)

lemma floor_eq3: "real n < x \<Longrightarrow> x < real (Suc n) \<Longrightarrow> nat \<lfloor>x\<rfloor> = n"
  by linarith

lemma floor_eq4: "real n \<le> x \<Longrightarrow> x < real (Suc n) \<Longrightarrow> nat \<lfloor>x\<rfloor> = n"
  by linarith

lemma real_of_int_floor_ge_diff_one [simp]: "r - 1 \<le> real_of_int \<lfloor>r\<rfloor>"
  by linarith

lemma real_of_int_floor_gt_diff_one [simp]: "r - 1 < real_of_int \<lfloor>r\<rfloor>"
  by linarith

lemma real_of_int_floor_add_one_ge [simp]: "r \<le> real_of_int \<lfloor>r\<rfloor> + 1"
  by linarith

lemma real_of_int_floor_add_one_gt [simp]: "r < real_of_int \<lfloor>r\<rfloor> + 1"
  by linarith

lemma floor_divide_real_eq_div:
  assumes "0 \<le> b"
  shows "\<lfloor>a / real_of_int b\<rfloor> = \<lfloor>a\<rfloor> div b"
proof (cases "b = 0")
  case True
  then show ?thesis by simp
next
  case False
  with assms have b: "b > 0" by simp
  have "j = i div b"
    if "real_of_int i \<le> a" "a < 1 + real_of_int i"
      "real_of_int j * real_of_int b \<le> a" "a < real_of_int b + real_of_int j * real_of_int b"
    for i j :: int
  proof -
    from that have "i < b + j * b"
      by (metis le_less_trans of_int_add of_int_less_iff of_int_mult)
    moreover have "j * b < 1 + i"
    proof -
      have "real_of_int (j * b) < real_of_int i + 1"
        using \<open>a < 1 + real_of_int i\<close> \<open>real_of_int j * real_of_int b \<le> a\<close> by force
      then show "j * b < 1 + i" by linarith
    qed
    ultimately have "(j - i div b) * b \<le> i mod b" "i mod b < ((j - i div b) + 1) * b"
      by (auto simp: field_simps)
    then have "(j - i div b) * b < 1 * b" "0 * b < ((j - i div b) + 1) * b"
      using pos_mod_bound [OF b, of i] pos_mod_sign [OF b, of i]
      by linarith+
    then show ?thesis using b unfolding mult_less_cancel_right by auto
  qed
  with b show ?thesis by (auto split: floor_split simp: field_simps)
qed

lemma floor_one_divide_eq_div_numeral [simp]:
  "\<lfloor>1 / numeral b::real\<rfloor> = 1 div numeral b"
by (metis floor_divide_of_int_eq of_int_1 of_int_numeral)

lemma floor_minus_one_divide_eq_div_numeral [simp]:
  "\<lfloor>- (1 / numeral b)::real\<rfloor> = - 1 div numeral b"
by (metis (mono_tags, opaque_lifting) div_minus_right minus_divide_right
    floor_divide_of_int_eq of_int_neg_numeral of_int_1)

lemma floor_divide_eq_div_numeral [simp]:
  "\<lfloor>numeral a / numeral b::real\<rfloor> = numeral a div numeral b"
by (metis floor_divide_of_int_eq of_int_numeral)

lemma floor_minus_divide_eq_div_numeral [simp]:
  "\<lfloor>- (numeral a / numeral b)::real\<rfloor> = - numeral a div numeral b"
by (metis divide_minus_left floor_divide_of_int_eq of_int_neg_numeral of_int_numeral)

lemma of_int_ceiling_cancel [simp]: "of_int \<lceil>x\<rceil> = x \<longleftrightarrow> (\<exists>n::int. x = of_int n)"
  using ceiling_of_int by metis

lemma of_int_ceiling [simp]: "a \<in> \<int> \<Longrightarrow> of_int (ceiling a) = a"
  by (metis Ints_cases of_int_ceiling_cancel) 

lemma ceiling_eq: "of_int n < x \<Longrightarrow> x \<le> of_int n + 1 \<Longrightarrow> \<lceil>x\<rceil> = n + 1"
  by (simp add: ceiling_unique)

lemma of_int_ceiling_diff_one_le [simp]: "of_int \<lceil>r\<rceil> - 1 \<le> r"
  by linarith

lemma of_int_ceiling_le_add_one [simp]: "of_int \<lceil>r\<rceil> \<le> r + 1"
  by linarith

lemma ceiling_le: "x \<le> of_int a \<Longrightarrow> \<lceil>x\<rceil> \<le> a"
  by (simp add: ceiling_le_iff)

lemma ceiling_divide_eq_div: "\<lceil>of_int a / of_int b\<rceil> = - (- a div b)"
  by (metis ceiling_def floor_divide_of_int_eq minus_divide_left of_int_minus)

lemma ceiling_divide_eq_div_numeral [simp]:
  "\<lceil>numeral a / numeral b :: real\<rceil> = - (- numeral a div numeral b)"
  using ceiling_divide_eq_div[of "numeral a" "numeral b"] by simp

lemma ceiling_minus_divide_eq_div_numeral [simp]:
  "\<lceil>- (numeral a / numeral b :: real)\<rceil> = - (numeral a div numeral b)"
  using ceiling_divide_eq_div[of "- numeral a" "numeral b"] by simp

text \<open>
  The following lemmas are remnants of the erstwhile functions natfloor
  and natceiling.
\<close>

lemma nat_floor_neg: "x \<le> 0 \<Longrightarrow> nat \<lfloor>x\<rfloor> = 0"
  for x :: real
  by linarith

lemma le_nat_floor: "real x \<le> a \<Longrightarrow> x \<le> nat \<lfloor>a\<rfloor>"
  by linarith

lemma le_mult_nat_floor: "nat \<lfloor>a\<rfloor> * nat \<lfloor>b\<rfloor> \<le> nat \<lfloor>a * b\<rfloor>"
  by (cases "0 \<le> a \<and> 0 \<le> b")
     (auto simp add: nat_mult_distrib[symmetric] nat_mono le_mult_floor)

lemma nat_ceiling_le_eq [simp]: "nat \<lceil>x\<rceil> \<le> a \<longleftrightarrow> x \<le> real a"
  by linarith

lemma real_nat_ceiling_ge: "x \<le> real (nat \<lceil>x\<rceil>)"
  by linarith

lemma Rats_no_top_le: "\<exists>q \<in> \<rat>. x \<le> q"
  for x :: real
  by (auto intro!: bexI[of _ "of_nat (nat \<lceil>x\<rceil>)"]) linarith

lemma Rats_no_bot_less: "\<exists>q \<in> \<rat>. q < x" for x :: real
  by (auto intro!: bexI[of _ "of_int (\<lfloor>x\<rfloor> - 1)"]) linarith


subsection \<open>Exponentiation with floor\<close>

lemma floor_power:
  assumes "x = of_int \<lfloor>x\<rfloor>"
  shows "\<lfloor>x ^ n\<rfloor> = \<lfloor>x\<rfloor> ^ n"
proof -
  have "x ^ n = of_int (\<lfloor>x\<rfloor> ^ n)"
    using assms by (induct n arbitrary: x) simp_all
  then show ?thesis by (metis floor_of_int)
qed

lemma floor_numeral_power [simp]: "\<lfloor>numeral x ^ n\<rfloor> = numeral x ^ n"
  by (metis floor_of_int of_int_numeral of_int_power)

lemma ceiling_numeral_power [simp]: "\<lceil>numeral x ^ n\<rceil> = numeral x ^ n"
  by (metis ceiling_of_int of_int_numeral of_int_power)


subsection \<open>Implementation of rational real numbers\<close>

text \<open>Formal constructor\<close>

definition Ratreal :: "rat \<Rightarrow> real"
  where [code_abbrev, simp]: "Ratreal = real_of_rat"

code_datatype Ratreal


text \<open>Quasi-Numerals\<close>

lemma [code_abbrev]:
  "real_of_rat (numeral k) = numeral k"
  "real_of_rat (- numeral k) = - numeral k"
  "real_of_rat (rat_of_int a) = real_of_int a"
  by simp_all

lemma [code_post]:
  "real_of_rat 0 = 0"
  "real_of_rat 1 = 1"
  "real_of_rat (- 1) = - 1"
  "real_of_rat (1 / numeral k) = 1 / numeral k"
  "real_of_rat (numeral k / numeral l) = numeral k / numeral l"
  "real_of_rat (- (1 / numeral k)) = - (1 / numeral k)"
  "real_of_rat (- (numeral k / numeral l)) = - (numeral k / numeral l)"
  by (simp_all add: of_rat_divide of_rat_minus)

text \<open>Operations\<close>

lemma zero_real_code [code]: "0 = Ratreal 0"
  by simp

lemma one_real_code [code]: "1 = Ratreal 1"
  by simp

instantiation real :: equal
begin

definition "HOL.equal x y \<longleftrightarrow> x - y = 0" for x :: real

instance by standard (simp add: equal_real_def)

lemma real_equal_code [code]: "HOL.equal (Ratreal x) (Ratreal y) \<longleftrightarrow> HOL.equal x y"
  by (simp add: equal_real_def equal)

lemma [code nbe]: "HOL.equal x x \<longleftrightarrow> True"
  for x :: real
  by (rule equal_refl)

end

lemma real_less_eq_code [code]: "Ratreal x \<le> Ratreal y \<longleftrightarrow> x \<le> y"
  by (simp add: of_rat_less_eq)

lemma real_less_code [code]: "Ratreal x < Ratreal y \<longleftrightarrow> x < y"
  by (simp add: of_rat_less)

lemma real_plus_code [code]: "Ratreal x + Ratreal y = Ratreal (x + y)"
  by (simp add: of_rat_add)

lemma real_times_code [code]: "Ratreal x * Ratreal y = Ratreal (x * y)"
  by (simp add: of_rat_mult)

lemma real_uminus_code [code]: "- Ratreal x = Ratreal (- x)"
  by (simp add: of_rat_minus)

lemma real_minus_code [code]: "Ratreal x - Ratreal y = Ratreal (x - y)"
  by (simp add: of_rat_diff)

lemma real_inverse_code [code]: "inverse (Ratreal x) = Ratreal (inverse x)"
  by (simp add: of_rat_inverse)

lemma real_divide_code [code]: "Ratreal x / Ratreal y = Ratreal (x / y)"
  by (simp add: of_rat_divide)

lemma real_floor_code [code]: "\<lfloor>Ratreal x\<rfloor> = \<lfloor>x\<rfloor>"
  by (metis Ratreal_def floor_le_iff floor_unique le_floor_iff
      of_int_floor_le of_rat_of_int_eq real_less_eq_code)


text \<open>Quickcheck\<close>

context
  includes term_syntax
begin

definition
  valterm_ratreal :: "rat \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> real \<times> (unit \<Rightarrow> Code_Evaluation.term)"
  where [code_unfold]: "valterm_ratreal k = Code_Evaluation.valtermify Ratreal {\<cdot>} k"

end

instantiation real :: random
begin

context
  includes state_combinator_syntax
begin

definition
  "Quickcheck_Random.random i = Quickcheck_Random.random i \<circ>\<rightarrow> (\<lambda>r. Pair (valterm_ratreal r))"

instance ..

end

end

instantiation real :: exhaustive
begin

definition
  "exhaustive_real f d = Quickcheck_Exhaustive.exhaustive (\<lambda>r. f (Ratreal r)) d"

instance ..

end

instantiation real :: full_exhaustive
begin

definition
  "full_exhaustive_real f d = Quickcheck_Exhaustive.full_exhaustive (\<lambda>r. f (valterm_ratreal r)) d"

instance ..

end

instantiation real :: narrowing
begin

definition
  "narrowing_real = Quickcheck_Narrowing.apply (Quickcheck_Narrowing.cons Ratreal) narrowing"

instance ..

end


subsection \<open>Setup for Nitpick\<close>

declaration \<open>
  Nitpick_HOL.register_frac_type \<^type_name>\<open>real\<close>
    [(\<^const_name>\<open>zero_real_inst.zero_real\<close>, \<^const_name>\<open>Nitpick.zero_frac\<close>),
     (\<^const_name>\<open>one_real_inst.one_real\<close>, \<^const_name>\<open>Nitpick.one_frac\<close>),
     (\<^const_name>\<open>plus_real_inst.plus_real\<close>, \<^const_name>\<open>Nitpick.plus_frac\<close>),
     (\<^const_name>\<open>times_real_inst.times_real\<close>, \<^const_name>\<open>Nitpick.times_frac\<close>),
     (\<^const_name>\<open>uminus_real_inst.uminus_real\<close>, \<^const_name>\<open>Nitpick.uminus_frac\<close>),
     (\<^const_name>\<open>inverse_real_inst.inverse_real\<close>, \<^const_name>\<open>Nitpick.inverse_frac\<close>),
     (\<^const_name>\<open>ord_real_inst.less_real\<close>, \<^const_name>\<open>Nitpick.less_frac\<close>),
     (\<^const_name>\<open>ord_real_inst.less_eq_real\<close>, \<^const_name>\<open>Nitpick.less_eq_frac\<close>)]
\<close>

lemmas [nitpick_unfold] = inverse_real_inst.inverse_real one_real_inst.one_real
  ord_real_inst.less_real ord_real_inst.less_eq_real plus_real_inst.plus_real
  times_real_inst.times_real uminus_real_inst.uminus_real
  zero_real_inst.zero_real


subsection \<open>Setup for SMT\<close>

ML_file \<open>Tools/SMT/smt_real.ML\<close>
ML_file \<open>Tools/SMT/z3_real.ML\<close>

lemma [z3_rule]:
  "0 + x = x"
  "x + 0 = x"
  "0 * x = 0"
  "1 * x = x"
  "-x = -1 * x"
  "x + y = y + x"
  for x y :: real
  by auto

lemma [smt_arith_multiplication]:
  fixes A B :: real and p n :: real
  assumes "A \<le> B" "0 < n" "p > 0"
  shows "(A / n) * p \<le> (B / n) * p"
  using assms by (auto simp: field_simps)

lemma [smt_arith_multiplication]:
  fixes A B :: real and p n :: real
  assumes "A < B" "0 < n" "p > 0"
  shows "(A / n) * p < (B / n) * p"
  using assms by (auto simp: field_simps)

lemma [smt_arith_multiplication]:
  fixes A B :: real and p n :: int
  assumes "A \<le> B" "0 < n" "p > 0"
  shows "(A / n) * p \<le> (B / n) * p"
  using assms by (auto simp: field_simps)

lemma [smt_arith_multiplication]:
  fixes A B :: real and p n :: int
  assumes "A < B" "0 < n" "p > 0"
  shows "(A / n) * p < (B / n) * p"
  using assms by (auto simp: field_simps)

lemmas [smt_arith_multiplication] =
  verit_le_mono_div[THEN mult_left_mono, unfolded int_distrib, of _ _ \<open>nat (floor (_ :: real))\<close>  \<open>nat (floor (_ :: real))\<close>]
  div_le_mono[THEN mult_left_mono, unfolded int_distrib, of _ _ \<open>nat (floor (_ :: real))\<close>  \<open>nat (floor (_ :: real))\<close>]
  verit_le_mono_div_int[THEN mult_left_mono, unfolded int_distrib, of _ _ \<open>floor (_ :: real)\<close>  \<open>floor (_ :: real)\<close>]
  zdiv_mono1[THEN mult_left_mono, unfolded int_distrib, of _ _ \<open>floor (_ :: real)\<close>  \<open>floor (_ :: real)\<close>]
  arg_cong[of _ _ \<open>\<lambda>a :: real. a / real (n::nat) * real (p::nat)\<close> for n p :: nat, THEN sym]
  arg_cong[of _ _ \<open>\<lambda>a :: real. a / real_of_int n * real_of_int p\<close> for n p :: int, THEN sym]
  arg_cong[of _ _ \<open>\<lambda>a :: real. a / n * p\<close> for n p :: real, THEN sym]

lemmas [smt_arith_simplify] =
   floor_one floor_numeral div_by_1 times_divide_eq_right
   nonzero_mult_div_cancel_left division_ring_divide_zero div_0
  divide_minus_left zero_less_divide_iff


subsection \<open>Setup for Argo\<close>

ML_file \<open>Tools/Argo/argo_real.ML\<close>

end