proper case_names for int_cases, int_of_nat_induct;
tuned some proofs, eliminating (cases, auto) anti-pattern;
(* Title: HOL/Library/Char_nat.thy
Author: Norbert Voelker, Florian Haftmann
*)
header {* Mapping between characters and natural numbers *}
theory Char_nat
imports List Main
begin
text {* Conversions between nibbles and natural numbers in [0..15]. *}
primrec
nat_of_nibble :: "nibble \<Rightarrow> nat" where
"nat_of_nibble Nibble0 = 0"
| "nat_of_nibble Nibble1 = 1"
| "nat_of_nibble Nibble2 = 2"
| "nat_of_nibble Nibble3 = 3"
| "nat_of_nibble Nibble4 = 4"
| "nat_of_nibble Nibble5 = 5"
| "nat_of_nibble Nibble6 = 6"
| "nat_of_nibble Nibble7 = 7"
| "nat_of_nibble Nibble8 = 8"
| "nat_of_nibble Nibble9 = 9"
| "nat_of_nibble NibbleA = 10"
| "nat_of_nibble NibbleB = 11"
| "nat_of_nibble NibbleC = 12"
| "nat_of_nibble NibbleD = 13"
| "nat_of_nibble NibbleE = 14"
| "nat_of_nibble NibbleF = 15"
definition
nibble_of_nat :: "nat \<Rightarrow> nibble" where
"nibble_of_nat x = (let y = x mod 16 in
if y = 0 then Nibble0 else
if y = 1 then Nibble1 else
if y = 2 then Nibble2 else
if y = 3 then Nibble3 else
if y = 4 then Nibble4 else
if y = 5 then Nibble5 else
if y = 6 then Nibble6 else
if y = 7 then Nibble7 else
if y = 8 then Nibble8 else
if y = 9 then Nibble9 else
if y = 10 then NibbleA else
if y = 11 then NibbleB else
if y = 12 then NibbleC else
if y = 13 then NibbleD else
if y = 14 then NibbleE else
NibbleF)"
lemma nibble_of_nat_norm:
"nibble_of_nat (n mod 16) = nibble_of_nat n"
unfolding nibble_of_nat_def mod_mod_trivial ..
lemma nibble_of_nat_simps [simp]:
"nibble_of_nat 0 = Nibble0"
"nibble_of_nat 1 = Nibble1"
"nibble_of_nat 2 = Nibble2"
"nibble_of_nat 3 = Nibble3"
"nibble_of_nat 4 = Nibble4"
"nibble_of_nat 5 = Nibble5"
"nibble_of_nat 6 = Nibble6"
"nibble_of_nat 7 = Nibble7"
"nibble_of_nat 8 = Nibble8"
"nibble_of_nat 9 = Nibble9"
"nibble_of_nat 10 = NibbleA"
"nibble_of_nat 11 = NibbleB"
"nibble_of_nat 12 = NibbleC"
"nibble_of_nat 13 = NibbleD"
"nibble_of_nat 14 = NibbleE"
"nibble_of_nat 15 = NibbleF"
unfolding nibble_of_nat_def by auto
lemma nibble_of_nat_of_nibble: "nibble_of_nat (nat_of_nibble n) = n"
by (cases n) (simp_all only: nat_of_nibble.simps nibble_of_nat_simps)
lemma nat_of_nibble_of_nat: "nat_of_nibble (nibble_of_nat n) = n mod 16"
proof -
have nibble_nat_enum:
"n mod 16 \<in> {15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}"
proof -
have set_unfold: "\<And>n. {0..Suc n} = insert (Suc n) {0..n}" by auto
have "(n\<Colon>nat) mod 16 \<in> {0..Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc (Suc
(Suc (Suc (Suc (Suc (Suc (Suc 0))))))))))))))}" by simp
from this [simplified set_unfold atLeastAtMost_singleton]
show ?thesis by (simp add: numeral_2_eq_2 [symmetric])
qed
then show ?thesis unfolding nibble_of_nat_def
by auto
qed
lemma inj_nat_of_nibble: "inj nat_of_nibble"
by (rule inj_on_inverseI) (rule nibble_of_nat_of_nibble)
lemma nat_of_nibble_eq: "nat_of_nibble n = nat_of_nibble m \<longleftrightarrow> n = m"
by (rule inj_eq) (rule inj_nat_of_nibble)
lemma nat_of_nibble_less_16: "nat_of_nibble n < 16"
by (cases n) auto
lemma nat_of_nibble_div_16: "nat_of_nibble n div 16 = 0"
by (cases n) auto
text {* Conversion between chars and nats. *}
definition
nibble_pair_of_nat :: "nat \<Rightarrow> nibble \<times> nibble" where
"nibble_pair_of_nat n = (nibble_of_nat (n div 16), nibble_of_nat (n mod 16))"
lemma nibble_of_pair [code]:
"nibble_pair_of_nat n = (nibble_of_nat (n div 16), nibble_of_nat n)"
unfolding nibble_of_nat_norm [of n, symmetric] nibble_pair_of_nat_def ..
primrec
nat_of_char :: "char \<Rightarrow> nat" where
"nat_of_char (Char n m) = nat_of_nibble n * 16 + nat_of_nibble m"
lemmas [simp del] = nat_of_char.simps
definition
char_of_nat :: "nat \<Rightarrow> char" where
char_of_nat_def: "char_of_nat n = split Char (nibble_pair_of_nat n)"
lemma Char_char_of_nat:
"Char n m = char_of_nat (nat_of_nibble n * 16 + nat_of_nibble m)"
unfolding char_of_nat_def Let_def nibble_pair_of_nat_def
by (auto simp add: div_add1_eq mod_add_eq nat_of_nibble_div_16 nibble_of_nat_norm nibble_of_nat_of_nibble)
lemma char_of_nat_of_char:
"char_of_nat (nat_of_char c) = c"
by (cases c) (simp add: nat_of_char.simps, simp add: Char_char_of_nat)
lemma nat_of_char_of_nat:
"nat_of_char (char_of_nat n) = n mod 256"
proof -
from mod_div_equality [of n, symmetric, of 16]
have mod_mult_self3: "\<And>m k n \<Colon> nat. (k * n + m) mod n = m mod n"
proof -
fix m k n :: nat
show "(k * n + m) mod n = m mod n"
by (simp only: mod_mult_self1 [symmetric, of m n k] add_commute)
qed
from mod_div_decomp [of n 256] obtain k l where n: "n = k * 256 + l"
and k: "k = n div 256" and l: "l = n mod 256" by blast
have 16: "(0::nat) < 16" by auto
have 256: "(256 :: nat) = 16 * 16" by auto
have l_256: "l mod 256 = l" using l by auto
have l_div_256: "l div 16 * 16 mod 256 = l div 16 * 16"
using l by auto
have aux2: "(k * 256 mod 16 + l mod 16) div 16 = 0"
unfolding 256 mult_assoc [symmetric] mod_mult_self2_is_0 by simp
have aux3: "(k * 256 + l) div 16 = k * 16 + l div 16"
unfolding div_add1_eq [of "k * 256" l 16] aux2 256
mult_assoc [symmetric] div_mult_self_is_m [OF 16] by simp
have aux4: "(k * 256 + l) mod 16 = l mod 16"
unfolding 256 mult_assoc [symmetric] mod_mult_self3 ..
show ?thesis
by (simp add: nat_of_char.simps char_of_nat_def nibble_of_pair
nat_of_nibble_of_nat mod_mult_distrib
n aux3 mod_mult_self3 l_256 aux4 mod_add_eq [of "256 * k"] l_div_256)
qed
lemma nibble_pair_of_nat_char:
"nibble_pair_of_nat (nat_of_char (Char n m)) = (n, m)"
proof -
have nat_of_nibble_256:
"\<And>n m. (nat_of_nibble n * 16 + nat_of_nibble m) mod 256 =
nat_of_nibble n * 16 + nat_of_nibble m"
proof -
fix n m
have nat_of_nibble_less_eq_15: "\<And>n. nat_of_nibble n \<le> 15"
using Suc_leI [OF nat_of_nibble_less_16] by (auto simp add: eval_nat_numeral)
have less_eq_240: "nat_of_nibble n * 16 \<le> 240"
using nat_of_nibble_less_eq_15 by auto
have "nat_of_nibble n * 16 + nat_of_nibble m \<le> 240 + 15"
by (rule add_le_mono [of _ 240 _ 15]) (auto intro: nat_of_nibble_less_eq_15 less_eq_240)
then have "nat_of_nibble n * 16 + nat_of_nibble m < 256" (is "?rhs < _") by auto
then show "?rhs mod 256 = ?rhs" by auto
qed
show ?thesis
unfolding nibble_pair_of_nat_def Char_char_of_nat nat_of_char_of_nat nat_of_nibble_256
by (simp add: add_commute nat_of_nibble_div_16 nibble_of_nat_norm nibble_of_nat_of_nibble)
qed
text {* Code generator setup *}
code_modulename SML
Char_nat String
code_modulename OCaml
Char_nat String
code_modulename Haskell
Char_nat String
end