proper case_names for int_cases, int_of_nat_induct;
tuned some proofs, eliminating (cases, auto) anti-pattern;
(* Author: Alexander Krauss, TU Muenchen
Author: Christian Sternagel, University of Innsbruck
*)
header {* Monad notation for arbitrary types *}
theory Monad_Syntax
imports Main "~~/src/Tools/Adhoc_Overloading"
begin
text {*
We provide a convenient do-notation for monadic expressions
well-known from Haskell. @{const Let} is printed
specially in do-expressions.
*}
consts
bind :: "['a, 'b \<Rightarrow> 'c] \<Rightarrow> 'c" (infixr ">>=" 54)
notation (xsymbols)
bind (infixr "\<guillemotright>=" 54)
notation (latex output)
bind (infixr "\<bind>" 54)
abbreviation (do_notation)
bind_do :: "['a, 'b \<Rightarrow> 'c] \<Rightarrow> 'c"
where
"bind_do \<equiv> bind"
notation (output)
bind_do (infixr ">>=" 54)
notation (xsymbols output)
bind_do (infixr "\<guillemotright>=" 54)
notation (latex output)
bind_do (infixr "\<bind>" 54)
nonterminal do_binds and do_bind
syntax
"_do_block" :: "do_binds \<Rightarrow> 'a" ("do {//(2 _)//}" [12] 62)
"_do_bind" :: "[pttrn, 'a] \<Rightarrow> do_bind" ("(_ <-/ _)" 13)
"_do_let" :: "[pttrn, 'a] \<Rightarrow> do_bind" ("(2let _ =/ _)" [1000, 13] 13)
"_do_then" :: "'a \<Rightarrow> do_bind" ("_" [14] 13)
"_do_final" :: "'a \<Rightarrow> do_binds" ("_")
"_do_cons" :: "[do_bind, do_binds] \<Rightarrow> do_binds" ("_;//_" [13, 12] 12)
"_thenM" :: "['a, 'b] \<Rightarrow> 'b" (infixr ">>" 54)
syntax (xsymbols)
"_do_bind" :: "[pttrn, 'a] \<Rightarrow> do_bind" ("(_ \<leftarrow>/ _)" 13)
"_thenM" :: "['a, 'b] \<Rightarrow> 'b" (infixr "\<guillemotright>" 54)
syntax (latex output)
"_thenM" :: "['a, 'b] \<Rightarrow> 'b" (infixr "\<then>" 54)
translations
"_do_block (_do_cons (_do_then t) (_do_final e))"
== "CONST bind_do t (\<lambda>_. e)"
"_do_block (_do_cons (_do_bind p t) (_do_final e))"
== "CONST bind_do t (\<lambda>p. e)"
"_do_block (_do_cons (_do_let p t) bs)"
== "let p = t in _do_block bs"
"_do_block (_do_cons b (_do_cons c cs))"
== "_do_block (_do_cons b (_do_final (_do_block (_do_cons c cs))))"
"_do_cons (_do_let p t) (_do_final s)"
== "_do_final (let p = t in s)"
"_do_block (_do_final e)" => "e"
"(m >> n)" => "(m >>= (\<lambda>_. n))"
setup {*
Adhoc_Overloading.add_overloaded @{const_name bind}
#> Adhoc_Overloading.add_variant @{const_name bind} @{const_name Predicate.bind}
#> Adhoc_Overloading.add_variant @{const_name bind} @{const_name Option.bind}
*}
end