(* Title: HOL/Zorn.thy Author: Jacques D. Fleuriot Author: Tobias Nipkow, TUM Author: Christian Sternagel, JAISTZorn's Lemma (ported from Larry Paulson's Zorn.thy in ZF).*)section \<open>Zorn's Lemma and the Well-ordering Theorem\<close>theory Zorn imports Order_Relation Hilbert_Choicebeginsubsection \<open>Zorn's Lemma for the Subset Relation\<close>subsubsection \<open>Results that do not require an order\<close>text \<open>Let \<open>P\<close> be a binary predicate on the set \<open>A\<close>.\<close>locale pred_on = fixes A :: "'a set" and P :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix \<open>\<sqsubset>\<close> 50)beginabbreviation Peq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix \<open>\<sqsubseteq>\<close> 50) where "x \<sqsubseteq> y \<equiv> P\<^sup>=\<^sup>= x y"text \<open>A chain is a totally ordered subset of \<open>A\<close>.\<close>definition chain :: "'a set \<Rightarrow> bool" where "chain C \<longleftrightarrow> C \<subseteq> A \<and> (\<forall>x\<in>C. \<forall>y\<in>C. x \<sqsubseteq> y \<or> y \<sqsubseteq> x)"text \<open> We call a chain that is a proper superset of some set \<open>X\<close>, but not necessarily a chain itself, a superchain of \<open>X\<close>.\<close>abbreviation superchain :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" (infix \<open><c\<close> 50) where "X <c C \<equiv> chain C \<and> X \<subset> C"text \<open>A maximal chain is a chain that does not have a superchain.\<close>definition maxchain :: "'a set \<Rightarrow> bool" where "maxchain C \<longleftrightarrow> chain C \<and> (\<nexists>S. C <c S)"text \<open> We define the successor of a set to be an arbitrary superchain, if such exists, or the set itself, otherwise.\<close>definition suc :: "'a set \<Rightarrow> 'a set" where "suc C = (if \<not> chain C \<or> maxchain C then C else (SOME D. C <c D))"lemma chainI [Pure.intro?]: "C \<subseteq> A \<Longrightarrow> (\<And>x y. x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> x \<sqsubseteq> y \<or> y \<sqsubseteq> x) \<Longrightarrow> chain C" unfolding chain_def by blastlemma chain_total: "chain C \<Longrightarrow> x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> x \<sqsubseteq> y \<or> y \<sqsubseteq> x" by (simp add: chain_def)lemma not_chain_suc [simp]: "\<not> chain X \<Longrightarrow> suc X = X" by (simp add: suc_def)lemma maxchain_suc [simp]: "maxchain X \<Longrightarrow> suc X = X" by (simp add: suc_def)lemma suc_subset: "X \<subseteq> suc X" by (auto simp: suc_def maxchain_def intro: someI2)lemma chain_empty [simp]: "chain {}" by (auto simp: chain_def)lemma not_maxchain_Some: "chain C \<Longrightarrow> \<not> maxchain C \<Longrightarrow> C <c (SOME D. C <c D)" by (rule someI_ex) (auto simp: maxchain_def)lemma suc_not_equals: "chain C \<Longrightarrow> \<not> maxchain C \<Longrightarrow> suc C \<noteq> C" using not_maxchain_Some by (auto simp: suc_def)lemma subset_suc: assumes "X \<subseteq> Y" shows "X \<subseteq> suc Y" using assms by (rule subset_trans) (rule suc_subset)text \<open> We build a set \<^term>\<open>\<C>\<close> that is closed under applications of \<^term>\<open>suc\<close> and contains the union of all its subsets.\<close>inductive_set suc_Union_closed (\<open>\<C>\<close>) where suc: "X \<in> \<C> \<Longrightarrow> suc X \<in> \<C>" | Union [unfolded Pow_iff]: "X \<in> Pow \<C> \<Longrightarrow> \<Union>X \<in> \<C>"text \<open> Since the empty set as well as the set itself is a subset of every set, \<^term>\<open>\<C>\<close> contains at least \<^term>\<open>{} \<in> \<C>\<close> and \<^term>\<open>\<Union>\<C> \<in> \<C>\<close>.\<close>lemma suc_Union_closed_empty: "{} \<in> \<C>" and suc_Union_closed_Union: "\<Union>\<C> \<in> \<C>" using Union [of "{}"] and Union [of "\<C>"] by simp_alltext \<open>Thus closure under \<^term>\<open>suc\<close> will hit a maximal chain eventually, as is shown below.\<close>lemma suc_Union_closed_induct [consumes 1, case_names suc Union, induct pred: suc_Union_closed]: assumes "X \<in> \<C>" and "\<And>X. X \<in> \<C> \<Longrightarrow> Q X \<Longrightarrow> Q (suc X)" and "\<And>X. X \<subseteq> \<C> \<Longrightarrow> \<forall>x\<in>X. Q x \<Longrightarrow> Q (\<Union>X)" shows "Q X" using assms by induct blast+lemma suc_Union_closed_cases [consumes 1, case_names suc Union, cases pred: suc_Union_closed]: assumes "X \<in> \<C>" and "\<And>Y. X = suc Y \<Longrightarrow> Y \<in> \<C> \<Longrightarrow> Q" and "\<And>Y. X = \<Union>Y \<Longrightarrow> Y \<subseteq> \<C> \<Longrightarrow> Q" shows "Q" using assms by cases simp_alltext \<open>On chains, \<^term>\<open>suc\<close> yields a chain.\<close>lemma chain_suc: assumes "chain X" shows "chain (suc X)" using assms by (cases "\<not> chain X \<or> maxchain X") (force simp: suc_def dest: not_maxchain_Some)+lemma chain_sucD: assumes "chain X" shows "suc X \<subseteq> A \<and> chain (suc X)"proof - from \<open>chain X\<close> have *: "chain (suc X)" by (rule chain_suc) then have "suc X \<subseteq> A" unfolding chain_def by blast with * show ?thesis by blastqedlemma suc_Union_closed_total': assumes "X \<in> \<C>" and "Y \<in> \<C>" and *: "\<And>Z. Z \<in> \<C> \<Longrightarrow> Z \<subseteq> Y \<Longrightarrow> Z = Y \<or> suc Z \<subseteq> Y" shows "X \<subseteq> Y \<or> suc Y \<subseteq> X" using \<open>X \<in> \<C>\<close>proof induct case (suc X) with * show ?case by (blast del: subsetI intro: subset_suc)next case Union then show ?case by blastqedlemma suc_Union_closed_subsetD: assumes "Y \<subseteq> X" and "X \<in> \<C>" and "Y \<in> \<C>" shows "X = Y \<or> suc Y \<subseteq> X" using assms(2,3,1)proof (induct arbitrary: Y) case (suc X) note * = \<open>\<And>Y. Y \<in> \<C> \<Longrightarrow> Y \<subseteq> X \<Longrightarrow> X = Y \<or> suc Y \<subseteq> X\<close> with suc_Union_closed_total' [OF \<open>Y \<in> \<C>\<close> \<open>X \<in> \<C>\<close>] have "Y \<subseteq> X \<or> suc X \<subseteq> Y" by blast then show ?case proof assume "Y \<subseteq> X" with * and \<open>Y \<in> \<C>\<close> subset_suc show ?thesis by fastforce next assume "suc X \<subseteq> Y" with \<open>Y \<subseteq> suc X\<close> show ?thesis by blast qednext case (Union X) show ?case proof (rule ccontr) assume "\<not> ?thesis" with \<open>Y \<subseteq> \<Union>X\<close> obtain x y z where "\<not> suc Y \<subseteq> \<Union>X" and "x \<in> X" and "y \<in> x" and "y \<notin> Y" and "z \<in> suc Y" and "\<forall>x\<in>X. z \<notin> x" by blast with \<open>X \<subseteq> \<C>\<close> have "x \<in> \<C>" by blast from Union and \<open>x \<in> X\<close> have *: "\<And>y. y \<in> \<C> \<Longrightarrow> y \<subseteq> x \<Longrightarrow> x = y \<or> suc y \<subseteq> x" by blast with suc_Union_closed_total' [OF \<open>Y \<in> \<C>\<close> \<open>x \<in> \<C>\<close>] have "Y \<subseteq> x \<or> suc x \<subseteq> Y" by blast then show False proof assume "Y \<subseteq> x" with * [OF \<open>Y \<in> \<C>\<close>] \<open>y \<in> x\<close> \<open>y \<notin> Y\<close> \<open>x \<in> X\<close> \<open>\<not> suc Y \<subseteq> \<Union>X\<close> show False by blast next assume "suc x \<subseteq> Y" with \<open>y \<notin> Y\<close> suc_subset \<open>y \<in> x\<close> show False by blast qed qedqedtext \<open>The elements of \<^term>\<open>\<C>\<close> are totally ordered by the subset relation.\<close>lemma suc_Union_closed_total: assumes "X \<in> \<C>" and "Y \<in> \<C>" shows "X \<subseteq> Y \<or> Y \<subseteq> X"proof (cases "\<forall>Z\<in>\<C>. Z \<subseteq> Y \<longrightarrow> Z = Y \<or> suc Z \<subseteq> Y") case True with suc_Union_closed_total' [OF assms] have "X \<subseteq> Y \<or> suc Y \<subseteq> X" by blast with suc_subset [of Y] show ?thesis by blastnext case False then obtain Z where "Z \<in> \<C>" and "Z \<subseteq> Y" and "Z \<noteq> Y" and "\<not> suc Z \<subseteq> Y" by blast with suc_Union_closed_subsetD and \<open>Y \<in> \<C>\<close> show ?thesis by blastqedtext \<open>Once we hit a fixed point w.r.t. \<^term>\<open>suc\<close>, all other elements of \<^term>\<open>\<C>\<close> are subsets of this fixed point.\<close>lemma suc_Union_closed_suc: assumes "X \<in> \<C>" and "Y \<in> \<C>" and "suc Y = Y" shows "X \<subseteq> Y" using \<open>X \<in> \<C>\<close>proof induct case (suc X) with \<open>Y \<in> \<C>\<close> and suc_Union_closed_subsetD have "X = Y \<or> suc X \<subseteq> Y" by blast then show ?case by (auto simp: \<open>suc Y = Y\<close>)next case Union then show ?case by blastqedlemma eq_suc_Union: assumes "X \<in> \<C>" shows "suc X = X \<longleftrightarrow> X = \<Union>\<C>" (is "?lhs \<longleftrightarrow> ?rhs")proof assume ?lhs then have "\<Union>\<C> \<subseteq> X" by (rule suc_Union_closed_suc [OF suc_Union_closed_Union \<open>X \<in> \<C>\<close>]) with \<open>X \<in> \<C>\<close> show ?rhs by blastnext from \<open>X \<in> \<C>\<close> have "suc X \<in> \<C>" by (rule suc) then have "suc X \<subseteq> \<Union>\<C>" by blast moreover assume ?rhs ultimately have "suc X \<subseteq> X" by simp moreover have "X \<subseteq> suc X" by (rule suc_subset) ultimately show ?lhs ..qedlemma suc_in_carrier: assumes "X \<subseteq> A" shows "suc X \<subseteq> A" using assms by (cases "\<not> chain X \<or> maxchain X") (auto dest: chain_sucD)lemma suc_Union_closed_in_carrier: assumes "X \<in> \<C>" shows "X \<subseteq> A" using assms by induct (auto dest: suc_in_carrier)text \<open>All elements of \<^term>\<open>\<C>\<close> are chains.\<close>lemma suc_Union_closed_chain: assumes "X \<in> \<C>" shows "chain X" using assmsproof induct case (suc X) then show ?case using not_maxchain_Some by (simp add: suc_def)next case (Union X) then have "\<Union>X \<subseteq> A" by (auto dest: suc_Union_closed_in_carrier) moreover have "\<forall>x\<in>\<Union>X. \<forall>y\<in>\<Union>X. x \<sqsubseteq> y \<or> y \<sqsubseteq> x" proof (intro ballI) fix x y assume "x \<in> \<Union>X" and "y \<in> \<Union>X" then obtain u v where "x \<in> u" and "u \<in> X" and "y \<in> v" and "v \<in> X" by blast with Union have "u \<in> \<C>" and "v \<in> \<C>" and "chain u" and "chain v" by blast+ with suc_Union_closed_total have "u \<subseteq> v \<or> v \<subseteq> u" by blast then show "x \<sqsubseteq> y \<or> y \<sqsubseteq> x" proof assume "u \<subseteq> v" from \<open>chain v\<close> show ?thesis proof (rule chain_total) show "y \<in> v" by fact show "x \<in> v" using \<open>u \<subseteq> v\<close> and \<open>x \<in> u\<close> by blast qed next assume "v \<subseteq> u" from \<open>chain u\<close> show ?thesis proof (rule chain_total) show "x \<in> u" by fact show "y \<in> u" using \<open>v \<subseteq> u\<close> and \<open>y \<in> v\<close> by blast qed qed qed ultimately show ?case unfolding chain_def ..qedsubsubsection \<open>Hausdorff's Maximum Principle\<close>text \<open>There exists a maximal totally ordered subset of \<open>A\<close>. (Note that we do not require \<open>A\<close> to be partially ordered.)\<close>theorem Hausdorff: "\<exists>C. maxchain C"proof - let ?M = "\<Union>\<C>" have "maxchain ?M" proof (rule ccontr) assume "\<not> ?thesis" then have "suc ?M \<noteq> ?M" using suc_not_equals and suc_Union_closed_chain [OF suc_Union_closed_Union] by simp moreover have "suc ?M = ?M" using eq_suc_Union [OF suc_Union_closed_Union] by simp ultimately show False by contradiction qed then show ?thesis by blastqedtext \<open>Make notation \<^term>\<open>\<C>\<close> available again.\<close>no_notation suc_Union_closed (\<open>\<C>\<close>)lemma chain_extend: "chain C \<Longrightarrow> z \<in> A \<Longrightarrow> \<forall>x\<in>C. x \<sqsubseteq> z \<Longrightarrow> chain ({z} \<union> C)" unfolding chain_def by blastlemma maxchain_imp_chain: "maxchain C \<Longrightarrow> chain C" by (simp add: maxchain_def)endtext \<open>Hide constant \<^const>\<open>pred_on.suc_Union_closed\<close>, which was just needed for the proof of Hausforff's maximum principle.\<close>hide_const pred_on.suc_Union_closedlemma chain_mono: assumes "\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> P x y \<Longrightarrow> Q x y" and "pred_on.chain A P C" shows "pred_on.chain A Q C" using assms unfolding pred_on.chain_def by blastsubsubsection \<open>Results for the proper subset relation\<close>interpretation subset: pred_on "A" "(\<subset>)" for A .lemma subset_maxchain_max: assumes "subset.maxchain A C" and "X \<in> A" and "\<Union>C \<subseteq> X" shows "\<Union>C = X"proof (rule ccontr) let ?C = "{X} \<union> C" from \<open>subset.maxchain A C\<close> have "subset.chain A C" and *: "\<And>S. subset.chain A S \<Longrightarrow> \<not> C \<subset> S" by (auto simp: subset.maxchain_def) moreover have "\<forall>x\<in>C. x \<subseteq> X" using \<open>\<Union>C \<subseteq> X\<close> by auto ultimately have "subset.chain A ?C" using subset.chain_extend [of A C X] and \<open>X \<in> A\<close> by auto moreover assume **: "\<Union>C \<noteq> X" moreover from ** have "C \<subset> ?C" using \<open>\<Union>C \<subseteq> X\<close> by auto ultimately show False using * by blastqedlemma subset_chain_def: "\<And>\<A>. subset.chain \<A> \<C> = (\<C> \<subseteq> \<A> \<and> (\<forall>X\<in>\<C>. \<forall>Y\<in>\<C>. X \<subseteq> Y \<or> Y \<subseteq> X))" by (auto simp: subset.chain_def)lemma subset_chain_insert: "subset.chain \<A> (insert B \<B>) \<longleftrightarrow> B \<in> \<A> \<and> (\<forall>X\<in>\<B>. X \<subseteq> B \<or> B \<subseteq> X) \<and> subset.chain \<A> \<B>" by (fastforce simp add: subset_chain_def)subsubsection \<open>Zorn's lemma\<close>text \<open>If every chain has an upper bound, then there is a maximal set.\<close>theorem subset_Zorn: assumes "\<And>C. subset.chain A C \<Longrightarrow> \<exists>U\<in>A. \<forall>X\<in>C. X \<subseteq> U" shows "\<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M"proof - from subset.Hausdorff [of A] obtain M where "subset.maxchain A M" .. then have "subset.chain A M" by (rule subset.maxchain_imp_chain) with assms obtain Y where "Y \<in> A" and "\<forall>X\<in>M. X \<subseteq> Y" by blast moreover have "\<forall>X\<in>A. Y \<subseteq> X \<longrightarrow> Y = X" proof (intro ballI impI) fix X assume "X \<in> A" and "Y \<subseteq> X" show "Y = X" proof (rule ccontr) assume "\<not> ?thesis" with \<open>Y \<subseteq> X\<close> have "\<not> X \<subseteq> Y" by blast from subset.chain_extend [OF \<open>subset.chain A M\<close> \<open>X \<in> A\<close>] and \<open>\<forall>X\<in>M. X \<subseteq> Y\<close> have "subset.chain A ({X} \<union> M)" using \<open>Y \<subseteq> X\<close> by auto moreover have "M \<subset> {X} \<union> M" using \<open>\<forall>X\<in>M. X \<subseteq> Y\<close> and \<open>\<not> X \<subseteq> Y\<close> by auto ultimately show False using \<open>subset.maxchain A M\<close> by (auto simp: subset.maxchain_def) qed qed ultimately show ?thesis by blastqedtext \<open>Alternative version of Zorn's lemma for the subset relation.\<close>lemma subset_Zorn': assumes "\<And>C. subset.chain A C \<Longrightarrow> \<Union>C \<in> A" shows "\<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M"proof - from subset.Hausdorff [of A] obtain M where "subset.maxchain A M" .. then have "subset.chain A M" by (rule subset.maxchain_imp_chain) with assms have "\<Union>M \<in> A" . moreover have "\<forall>Z\<in>A. \<Union>M \<subseteq> Z \<longrightarrow> \<Union>M = Z" proof (intro ballI impI) fix Z assume "Z \<in> A" and "\<Union>M \<subseteq> Z" with subset_maxchain_max [OF \<open>subset.maxchain A M\<close>] show "\<Union>M = Z" . qed ultimately show ?thesis by blastqedsubsection \<open>Zorn's Lemma for Partial Orders\<close>text \<open>Relate old to new definitions.\<close>definition chain_subset :: "'a set set \<Rightarrow> bool" (\<open>chain\<^sub>\<subseteq>\<close>) (* Define globally? In Set.thy? *) where "chain\<^sub>\<subseteq> C \<longleftrightarrow> (\<forall>A\<in>C. \<forall>B\<in>C. A \<subseteq> B \<or> B \<subseteq> A)"definition chains :: "'a set set \<Rightarrow> 'a set set set" where "chains A = {C. C \<subseteq> A \<and> chain\<^sub>\<subseteq> C}"definition Chains :: "('a \<times> 'a) set \<Rightarrow> 'a set set" (* Define globally? In Relation.thy? *) where "Chains r = {C. \<forall>a\<in>C. \<forall>b\<in>C. (a, b) \<in> r \<or> (b, a) \<in> r}"lemma chains_extend: "c \<in> chains S \<Longrightarrow> z \<in> S \<Longrightarrow> \<forall>x \<in> c. x \<subseteq> z \<Longrightarrow> {z} \<union> c \<in> chains S" for z :: "'a set" unfolding chains_def chain_subset_def by blastlemma mono_Chains: "r \<subseteq> s \<Longrightarrow> Chains r \<subseteq> Chains s" unfolding Chains_def by blastlemma chain_subset_alt_def: "chain\<^sub>\<subseteq> C = subset.chain UNIV C" unfolding chain_subset_def subset.chain_def by fastlemma chains_alt_def: "chains A = {C. subset.chain A C}" by (simp add: chains_def chain_subset_alt_def subset.chain_def)lemma Chains_subset: "Chains r \<subseteq> {C. pred_on.chain UNIV (\<lambda>x y. (x, y) \<in> r) C}" by (force simp add: Chains_def pred_on.chain_def)lemma Chains_subset': assumes "refl r" shows "{C. pred_on.chain UNIV (\<lambda>x y. (x, y) \<in> r) C} \<subseteq> Chains r" using assms by (auto simp add: Chains_def pred_on.chain_def refl_on_def)lemma Chains_alt_def: assumes "refl r" shows "Chains r = {C. pred_on.chain UNIV (\<lambda>x y. (x, y) \<in> r) C}" using assms Chains_subset Chains_subset' by blastlemma Chains_relation_of: assumes "C \<in> Chains (relation_of P A)" shows "C \<subseteq> A" using assms unfolding Chains_def relation_of_def by autolemma pairwise_chain_Union: assumes P: "\<And>S. S \<in> \<C> \<Longrightarrow> pairwise R S" and "chain\<^sub>\<subseteq> \<C>" shows "pairwise R (\<Union>\<C>)" using \<open>chain\<^sub>\<subseteq> \<C>\<close> unfolding pairwise_def chain_subset_def by (blast intro: P [unfolded pairwise_def, rule_format])lemma Zorn_Lemma: "\<forall>C\<in>chains A. \<Union>C \<in> A \<Longrightarrow> \<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M" using subset_Zorn' [of A] by (force simp: chains_alt_def)lemma Zorn_Lemma2: "\<forall>C\<in>chains A. \<exists>U\<in>A. \<forall>X\<in>C. X \<subseteq> U \<Longrightarrow> \<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M" using subset_Zorn [of A] by (auto simp: chains_alt_def)subsection \<open>Other variants of Zorn's Lemma\<close>lemma chainsD: "c \<in> chains S \<Longrightarrow> x \<in> c \<Longrightarrow> y \<in> c \<Longrightarrow> x \<subseteq> y \<or> y \<subseteq> x" unfolding chains_def chain_subset_def by blastlemma chainsD2: "c \<in> chains S \<Longrightarrow> c \<subseteq> S" unfolding chains_def by blastlemma Zorns_po_lemma: assumes po: "Partial_order r" and u: "\<And>C. C \<in> Chains r \<Longrightarrow> \<exists>u\<in>Field r. \<forall>a\<in>C. (a, u) \<in> r" shows "\<exists>m\<in>Field r. \<forall>a\<in>Field r. (m, a) \<in> r \<longrightarrow> a = m"proof - have "Preorder r" using po by (simp add: partial_order_on_def) txt \<open>Mirror \<open>r\<close> in the set of subsets below (wrt \<open>r\<close>) elements of \<open>A\<close>.\<close> let ?B = "\<lambda>x. r\<inverse> `` {x}" let ?S = "?B ` Field r" have "\<exists>u\<in>Field r. \<forall>A\<in>C. A \<subseteq> r\<inverse> `` {u}" (is "\<exists>u\<in>Field r. ?P u") if 1: "C \<subseteq> ?S" and 2: "\<forall>A\<in>C. \<forall>B\<in>C. A \<subseteq> B \<or> B \<subseteq> A" for C proof - let ?A = "{x\<in>Field r. \<exists>M\<in>C. M = ?B x}" from 1 have "C = ?B ` ?A" by (auto simp: image_def) have "?A \<in> Chains r" proof (simp add: Chains_def, intro allI impI, elim conjE) fix a b assume "a \<in> Field r" and "?B a \<in> C" and "b \<in> Field r" and "?B b \<in> C" with 2 have "?B a \<subseteq> ?B b \<or> ?B b \<subseteq> ?B a" by auto then show "(a, b) \<in> r \<or> (b, a) \<in> r" using \<open>Preorder r\<close> and \<open>a \<in> Field r\<close> and \<open>b \<in> Field r\<close> by (simp add:subset_Image1_Image1_iff) qed then obtain u where uA: "u \<in> Field r" "\<forall>a\<in>?A. (a, u) \<in> r" by (auto simp: dest: u) have "?P u" proof auto fix a B assume aB: "B \<in> C" "a \<in> B" with 1 obtain x where "x \<in> Field r" and "B = r\<inverse> `` {x}" by auto then show "(a, u) \<in> r" using uA and aB and \<open>Preorder r\<close> unfolding preorder_on_def refl_on_def by simp (fast dest: transD) qed then show ?thesis using \<open>u \<in> Field r\<close> by blast qed then have "\<forall>C\<in>chains ?S. \<exists>U\<in>?S. \<forall>A\<in>C. A \<subseteq> U" by (auto simp: chains_def chain_subset_def) from Zorn_Lemma2 [OF this] obtain m B where "m \<in> Field r" and "B = r\<inverse> `` {m}" and "\<forall>x\<in>Field r. B \<subseteq> r\<inverse> `` {x} \<longrightarrow> r\<inverse> `` {x} = B" by auto then have "\<forall>a\<in>Field r. (m, a) \<in> r \<longrightarrow> a = m" using po and \<open>Preorder r\<close> and \<open>m \<in> Field r\<close> by (auto simp: subset_Image1_Image1_iff Partial_order_eq_Image1_Image1_iff) then show ?thesis using \<open>m \<in> Field r\<close> by blastqedlemma predicate_Zorn: assumes po: "partial_order_on A (relation_of P A)" and ch: "\<And>C. C \<in> Chains (relation_of P A) \<Longrightarrow> \<exists>u \<in> A. \<forall>a \<in> C. P a u" shows "\<exists>m \<in> A. \<forall>a \<in> A. P m a \<longrightarrow> a = m"proof - have "a \<in> A" if "C \<in> Chains (relation_of P A)" and "a \<in> C" for C a using that unfolding Chains_def relation_of_def by auto moreover have "(a, u) \<in> relation_of P A" if "a \<in> A" and "u \<in> A" and "P a u" for a u unfolding relation_of_def using that by auto ultimately have "\<exists>m\<in>A. \<forall>a\<in>A. (m, a) \<in> relation_of P A \<longrightarrow> a = m" using Zorns_po_lemma[OF Partial_order_relation_ofI[OF po], rule_format] ch unfolding Field_relation_of[OF partial_order_onD(1)[OF po]] by blast then show ?thesis by (auto simp: relation_of_def)qedlemma Union_in_chain: "\<lbrakk>finite \<B>; \<B> \<noteq> {}; subset.chain \<A> \<B>\<rbrakk> \<Longrightarrow> \<Union>\<B> \<in> \<B>"proof (induction \<B> rule: finite_induct) case (insert B \<B>) show ?case proof (cases "\<B> = {}") case False then show ?thesis using insert sup.absorb2 by (auto simp: subset_chain_insert dest!: bspec [where x="\<Union>\<B>"]) qed autoqed simplemma Inter_in_chain: "\<lbrakk>finite \<B>; \<B> \<noteq> {}; subset.chain \<A> \<B>\<rbrakk> \<Longrightarrow> \<Inter>\<B> \<in> \<B>"proof (induction \<B> rule: finite_induct) case (insert B \<B>) show ?case proof (cases "\<B> = {}") case False then show ?thesis using insert inf.absorb2 by (auto simp: subset_chain_insert dest!: bspec [where x="\<Inter>\<B>"]) qed autoqed simplemma finite_subset_Union_chain: assumes "finite A" "A \<subseteq> \<Union>\<B>" "\<B> \<noteq> {}" and sub: "subset.chain \<A> \<B>" obtains B where "B \<in> \<B>" "A \<subseteq> B"proof - obtain \<F> where \<F>: "finite \<F>" "\<F> \<subseteq> \<B>" "A \<subseteq> \<Union>\<F>" using assms by (auto intro: finite_subset_Union) show thesis proof (cases "\<F> = {}") case True then show ?thesis using \<open>A \<subseteq> \<Union>\<F>\<close> \<open>\<B> \<noteq> {}\<close> that by fastforce next case False show ?thesis proof show "\<Union>\<F> \<in> \<B>" using sub \<open>\<F> \<subseteq> \<B>\<close> \<open>finite \<F>\<close> by (simp add: Union_in_chain False subset.chain_def subset_iff) show "A \<subseteq> \<Union>\<F>" using \<open>A \<subseteq> \<Union>\<F>\<close> by blast qed qedqedlemma subset_Zorn_nonempty: assumes "\<A> \<noteq> {}" and ch: "\<And>\<C>. \<lbrakk>\<C>\<noteq>{}; subset.chain \<A> \<C>\<rbrakk> \<Longrightarrow> \<Union>\<C> \<in> \<A>" shows "\<exists>M\<in>\<A>. \<forall>X\<in>\<A>. M \<subseteq> X \<longrightarrow> X = M"proof (rule subset_Zorn) show "\<exists>U\<in>\<A>. \<forall>X\<in>\<C>. X \<subseteq> U" if "subset.chain \<A> \<C>" for \<C> proof (cases "\<C> = {}") case True then show ?thesis using \<open>\<A> \<noteq> {}\<close> by blast next case False show ?thesis by (blast intro!: ch False that Union_upper) qedqedsubsection \<open>The Well Ordering Theorem\<close>(* The initial segment of a relation appears generally useful. Move to Relation.thy? Definition correct/most general? Naming?*)definition init_seg_of :: "(('a \<times> 'a) set \<times> ('a \<times> 'a) set) set" where "init_seg_of = {(r, s). r \<subseteq> s \<and> (\<forall>a b c. (a, b) \<in> s \<and> (b, c) \<in> r \<longrightarrow> (a, b) \<in> r)}"abbreviation initial_segment_of_syntax :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool" (infix \<open>initial'_segment'_of\<close> 55) where "r initial_segment_of s \<equiv> (r, s) \<in> init_seg_of"lemma refl_on_init_seg_of [simp]: "r initial_segment_of r" by (simp add: init_seg_of_def)lemma trans_init_seg_of: "r initial_segment_of s \<Longrightarrow> s initial_segment_of t \<Longrightarrow> r initial_segment_of t" by (simp (no_asm_use) add: init_seg_of_def) blastlemma antisym_init_seg_of: "r initial_segment_of s \<Longrightarrow> s initial_segment_of r \<Longrightarrow> r = s" unfolding init_seg_of_def by safelemma Chains_init_seg_of_Union: "R \<in> Chains init_seg_of \<Longrightarrow> r\<in>R \<Longrightarrow> r initial_segment_of \<Union>R" by (auto simp: init_seg_of_def Ball_def Chains_def) blastlemma chain_subset_trans_Union: assumes "chain\<^sub>\<subseteq> R" "\<forall>r\<in>R. trans r" shows "trans (\<Union>R)"proof (intro transI, elim UnionE) fix S1 S2 :: "'a rel" and x y z :: 'a assume "S1 \<in> R" "S2 \<in> R" with assms(1) have "S1 \<subseteq> S2 \<or> S2 \<subseteq> S1" unfolding chain_subset_def by blast moreover assume "(x, y) \<in> S1" "(y, z) \<in> S2" ultimately have "((x, y) \<in> S1 \<and> (y, z) \<in> S1) \<or> ((x, y) \<in> S2 \<and> (y, z) \<in> S2)" by blast with \<open>S1 \<in> R\<close> \<open>S2 \<in> R\<close> assms(2) show "(x, z) \<in> \<Union>R" by (auto elim: transE)qedlemma chain_subset_antisym_Union: assumes "chain\<^sub>\<subseteq> R" "\<forall>r\<in>R. antisym r" shows "antisym (\<Union>R)"proof (intro antisymI, elim UnionE) fix S1 S2 :: "'a rel" and x y :: 'a assume "S1 \<in> R" "S2 \<in> R" with assms(1) have "S1 \<subseteq> S2 \<or> S2 \<subseteq> S1" unfolding chain_subset_def by blast moreover assume "(x, y) \<in> S1" "(y, x) \<in> S2" ultimately have "((x, y) \<in> S1 \<and> (y, x) \<in> S1) \<or> ((x, y) \<in> S2 \<and> (y, x) \<in> S2)" by blast with \<open>S1 \<in> R\<close> \<open>S2 \<in> R\<close> assms(2) show "x = y" unfolding antisym_def by autoqedlemma chain_subset_Total_Union: assumes "chain\<^sub>\<subseteq> R" and "\<forall>r\<in>R. Total r" shows "Total (\<Union>R)"proof (simp add: total_on_def Ball_def, auto del: disjCI) fix r s a b assume A: "r \<in> R" "s \<in> R" "a \<in> Field r" "b \<in> Field s" "a \<noteq> b" from \<open>chain\<^sub>\<subseteq> R\<close> and \<open>r \<in> R\<close> and \<open>s \<in> R\<close> have "r \<subseteq> s \<or> s \<subseteq> r" by (auto simp add: chain_subset_def) then show "(\<exists>r\<in>R. (a, b) \<in> r) \<or> (\<exists>r\<in>R. (b, a) \<in> r)" proof assume "r \<subseteq> s" then have "(a, b) \<in> s \<or> (b, a) \<in> s" using assms(2) A mono_Field[of r s] by (auto simp add: total_on_def) then show ?thesis using \<open>s \<in> R\<close> by blast next assume "s \<subseteq> r" then have "(a, b) \<in> r \<or> (b, a) \<in> r" using assms(2) A mono_Field[of s r] by (fastforce simp add: total_on_def) then show ?thesis using \<open>r \<in> R\<close> by blast qedqedlemma wf_Union_wf_init_segs: assumes "R \<in> Chains init_seg_of" and "\<forall>r\<in>R. wf r" shows "wf (\<Union>R)"proof (simp add: wf_iff_no_infinite_down_chain, rule ccontr, auto) fix f assume 1: "\<forall>i. \<exists>r\<in>R. (f (Suc i), f i) \<in> r" then obtain r where "r \<in> R" and "(f (Suc 0), f 0) \<in> r" by auto have "(f (Suc i), f i) \<in> r" for i proof (induct i) case 0 show ?case by fact next case (Suc i) then obtain s where s: "s \<in> R" "(f (Suc (Suc i)), f(Suc i)) \<in> s" using 1 by auto then have "s initial_segment_of r \<or> r initial_segment_of s" using assms(1) \<open>r \<in> R\<close> by (simp add: Chains_def) with Suc s show ?case by (simp add: init_seg_of_def) blast qed then show False using assms(2) and \<open>r \<in> R\<close> by (simp add: wf_iff_no_infinite_down_chain) blastqedlemma initial_segment_of_Diff: "p initial_segment_of q \<Longrightarrow> p - s initial_segment_of q - s" unfolding init_seg_of_def by blastlemma Chains_inits_DiffI: "R \<in> Chains init_seg_of \<Longrightarrow> {r - s |r. r \<in> R} \<in> Chains init_seg_of" unfolding Chains_def by (blast intro: initial_segment_of_Diff)theorem well_ordering: "\<exists>r::'a rel. Well_order r \<and> Field r = UNIV"proof -\<comment> \<open>The initial segment relation on well-orders:\<close> let ?WO = "{r::'a rel. Well_order r}" define I where "I = init_seg_of \<inter> ?WO \<times> ?WO" then have I_init: "I \<subseteq> init_seg_of" by simp then have subch: "\<And>R. R \<in> Chains I \<Longrightarrow> chain\<^sub>\<subseteq> R" unfolding init_seg_of_def chain_subset_def Chains_def by blast have Chains_wo: "\<And>R r. R \<in> Chains I \<Longrightarrow> r \<in> R \<Longrightarrow> Well_order r" by (simp add: Chains_def I_def) blast have FI: "Field I = ?WO" by (auto simp add: I_def init_seg_of_def Field_def) then have 0: "Partial_order I" by (auto simp: partial_order_on_def preorder_on_def antisym_def antisym_init_seg_of refl_on_def trans_def I_def elim!: trans_init_seg_of)\<comment> \<open>\<open>I\<close>-chains have upper bounds in \<open>?WO\<close> wrt \<open>I\<close>: their Union\<close> have "\<Union>R \<in> ?WO \<and> (\<forall>r\<in>R. (r, \<Union>R) \<in> I)" if "R \<in> Chains I" for R proof - from that have Ris: "R \<in> Chains init_seg_of" using mono_Chains [OF I_init] by blast have subch: "chain\<^sub>\<subseteq> R" using \<open>R \<in> Chains I\<close> I_init by (auto simp: init_seg_of_def chain_subset_def Chains_def) have "\<forall>r\<in>R. Refl r" and "\<forall>r\<in>R. trans r" and "\<forall>r\<in>R. antisym r" and "\<forall>r\<in>R. Total r" and "\<forall>r\<in>R. wf (r - Id)" using Chains_wo [OF \<open>R \<in> Chains I\<close>] by (simp_all add: order_on_defs) have "Refl (\<Union>R)" using \<open>\<forall>r\<in>R. Refl r\<close> unfolding refl_on_def by fastforce moreover have "trans (\<Union>R)" by (rule chain_subset_trans_Union [OF subch \<open>\<forall>r\<in>R. trans r\<close>]) moreover have "antisym (\<Union>R)" by (rule chain_subset_antisym_Union [OF subch \<open>\<forall>r\<in>R. antisym r\<close>]) moreover have "Total (\<Union>R)" by (rule chain_subset_Total_Union [OF subch \<open>\<forall>r\<in>R. Total r\<close>]) moreover have "wf ((\<Union>R) - Id)" proof - have "(\<Union>R) - Id = \<Union>{r - Id | r. r \<in> R}" by blast with \<open>\<forall>r\<in>R. wf (r - Id)\<close> and wf_Union_wf_init_segs [OF Chains_inits_DiffI [OF Ris]] show ?thesis by fastforce qed ultimately have "Well_order (\<Union>R)" by (simp add:order_on_defs) moreover have "\<forall>r \<in> R. r initial_segment_of \<Union>R" using Ris by (simp add: Chains_init_seg_of_Union) ultimately show ?thesis using mono_Chains [OF I_init] Chains_wo[of R] and \<open>R \<in> Chains I\<close> unfolding I_def by blast qed then have 1: "\<exists>u\<in>Field I. \<forall>r\<in>R. (r, u) \<in> I" if "R \<in> Chains I" for R using that by (subst FI) blast\<comment> \<open>Zorn's Lemma yields a maximal well-order \<open>m\<close>:\<close> then obtain m :: "'a rel" where "Well_order m" and max: "\<forall>r. Well_order r \<and> (m, r) \<in> I \<longrightarrow> r = m" using Zorns_po_lemma[OF 0 1] unfolding FI by fastforce\<comment> \<open>Now show by contradiction that \<open>m\<close> covers the whole type:\<close> have False if "x \<notin> Field m" for x :: 'a proof -\<comment> \<open>Assuming that \<open>x\<close> is not covered and extend \<open>m\<close> at the top with \<open>x\<close>\<close> have "m \<noteq> {}" proof assume "m = {}" moreover have "Well_order {(x, x)}" by (simp add: order_on_defs refl_on_def trans_def antisym_def total_on_def Field_def) ultimately show False using max by (auto simp: I_def init_seg_of_def simp del: Field_insert) qed then have "Field m \<noteq> {}" by (auto simp: Field_def) moreover have "wf (m - Id)" using \<open>Well_order m\<close> by (simp add: well_order_on_def)\<comment> \<open>The extension of \<open>m\<close> by \<open>x\<close>:\<close> let ?s = "{(a, x) | a. a \<in> Field m}" let ?m = "insert (x, x) m \<union> ?s" have Fm: "Field ?m = insert x (Field m)" by (auto simp: Field_def) have "Refl m" and "trans m" and "antisym m" and "Total m" and "wf (m - Id)" using \<open>Well_order m\<close> by (simp_all add: order_on_defs)\<comment> \<open>We show that the extension is a well-order\<close> have "Refl ?m" using \<open>Refl m\<close> Fm unfolding refl_on_def by blast moreover have "trans ?m" using \<open>trans m\<close> and \<open>x \<notin> Field m\<close> unfolding trans_def Field_def by blast moreover have "antisym ?m" using \<open>antisym m\<close> and \<open>x \<notin> Field m\<close> unfolding antisym_def Field_def by blast moreover have "Total ?m" using \<open>Total m\<close> and Fm by (auto simp: total_on_def) moreover have "wf (?m - Id)" proof - have "wf ?s" using \<open>x \<notin> Field m\<close> by (auto simp: wf_eq_minimal Field_def Bex_def) then show ?thesis using \<open>wf (m - Id)\<close> and \<open>x \<notin> Field m\<close> wf_subset [OF \<open>wf ?s\<close> Diff_subset] by (auto simp: Un_Diff Field_def intro: wf_Un) qed ultimately have "Well_order ?m" by (simp add: order_on_defs)\<comment> \<open>We show that the extension is above \<open>m\<close>\<close> moreover have "(m, ?m) \<in> I" using \<open>Well_order ?m\<close> and \<open>Well_order m\<close> and \<open>x \<notin> Field m\<close> by (fastforce simp: I_def init_seg_of_def Field_def) ultimately\<comment> \<open>This contradicts maximality of \<open>m\<close>:\<close> show False using max and \<open>x \<notin> Field m\<close> unfolding Field_def by blast qed then have "Field m = UNIV" by auto with \<open>Well_order m\<close> show ?thesis by blastqedcorollary well_order_on: "\<exists>r::'a rel. well_order_on A r"proof - obtain r :: "'a rel" where wo: "Well_order r" and univ: "Field r = UNIV" using well_ordering [where 'a = "'a"] by blast let ?r = "{(x, y). x \<in> A \<and> y \<in> A \<and> (x, y) \<in> r}" have 1: "Field ?r = A" using wo univ by (fastforce simp: Field_def order_on_defs refl_on_def) from \<open>Well_order r\<close> have "Refl r" "trans r" "antisym r" "Total r" "wf (r - Id)" by (simp_all add: order_on_defs) from \<open>Refl r\<close> have "Refl ?r" by (auto simp: refl_on_def 1 univ) moreover from \<open>trans r\<close> have "trans ?r" unfolding trans_def by blast moreover from \<open>antisym r\<close> have "antisym ?r" unfolding antisym_def by blast moreover from \<open>Total r\<close> have "Total ?r" by (simp add:total_on_def 1 univ) moreover have "wf (?r - Id)" by (rule wf_subset [OF \<open>wf (r - Id)\<close>]) blast ultimately have "Well_order ?r" by (simp add: order_on_defs) with 1 show ?thesis by autoqedlemma dependent_wf_choice: fixes P :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool" assumes "wf R" and adm: "\<And>f g x r. (\<And>z. (z, x) \<in> R \<Longrightarrow> f z = g z) \<Longrightarrow> P f x r = P g x r" and P: "\<And>x f. (\<And>y. (y, x) \<in> R \<Longrightarrow> P f y (f y)) \<Longrightarrow> \<exists>r. P f x r" shows "\<exists>f. \<forall>x. P f x (f x)"proof (intro exI allI) fix x define f where "f \<equiv> wfrec R (\<lambda>f x. SOME r. P f x r)" from \<open>wf R\<close> show "P f x (f x)" proof (induct x) case (less x) show "P f x (f x)" proof (subst (2) wfrec_def_adm[OF f_def \<open>wf R\<close>]) show "adm_wf R (\<lambda>f x. SOME r. P f x r)" by (auto simp: adm_wf_def intro!: arg_cong[where f=Eps] adm) show "P f x (Eps (P f x))" using P by (rule someI_ex) fact qed qedqedlemma (in wellorder) dependent_wellorder_choice: assumes "\<And>r f g x. (\<And>y. y < x \<Longrightarrow> f y = g y) \<Longrightarrow> P f x r = P g x r" and P: "\<And>x f. (\<And>y. y < x \<Longrightarrow> P f y (f y)) \<Longrightarrow> \<exists>r. P f x r" shows "\<exists>f. \<forall>x. P f x (f x)" using wf by (rule dependent_wf_choice) (auto intro!: assms)end