(* Title: HOL/Library/Comparator.thy
Author: Florian Haftmann, TU Muenchen
*)
theory Comparator
imports Main
begin
section \<open>Comparators on linear quasi-orders\<close>
subsection \<open>Basic properties\<close>
datatype comp = Less | Equiv | Greater
locale comparator =
fixes cmp :: \<open>'a \<Rightarrow> 'a \<Rightarrow> comp\<close>
assumes refl [simp]: \<open>\<And>a. cmp a a = Equiv\<close>
and trans_equiv: \<open>\<And>a b c. cmp a b = Equiv \<Longrightarrow> cmp b c = Equiv \<Longrightarrow> cmp a c = Equiv\<close>
assumes trans_less: \<open>cmp a b = Less \<Longrightarrow> cmp b c = Less \<Longrightarrow> cmp a c = Less\<close>
and greater_iff_sym_less: \<open>\<And>b a. cmp b a = Greater \<longleftrightarrow> cmp a b = Less\<close>
begin
text \<open>Dual properties\<close>
lemma trans_greater:
\<open>cmp a c = Greater\<close> if \<open>cmp a b = Greater\<close> \<open>cmp b c = Greater\<close>
using that greater_iff_sym_less trans_less by blast
lemma less_iff_sym_greater:
\<open>cmp b a = Less \<longleftrightarrow> cmp a b = Greater\<close>
by (simp add: greater_iff_sym_less)
text \<open>The equivalence part\<close>
lemma sym:
\<open>cmp b a = Equiv \<longleftrightarrow> cmp a b = Equiv\<close>
by (metis (full_types) comp.exhaust greater_iff_sym_less)
lemma reflp:
\<open>reflp (\<lambda>a b. cmp a b = Equiv)\<close>
by (rule reflpI) simp
lemma symp:
\<open>symp (\<lambda>a b. cmp a b = Equiv)\<close>
by (rule sympI) (simp add: sym)
lemma transp:
\<open>transp (\<lambda>a b. cmp a b = Equiv)\<close>
by (rule transpI) (fact trans_equiv)
lemma equivp:
\<open>equivp (\<lambda>a b. cmp a b = Equiv)\<close>
using reflp symp transp by (rule equivpI)
text \<open>The strict part\<close>
lemma irreflp_less:
\<open>irreflp (\<lambda>a b. cmp a b = Less)\<close>
by (rule irreflpI) simp
lemma irreflp_greater:
\<open>irreflp (\<lambda>a b. cmp a b = Greater)\<close>
by (rule irreflpI) simp
lemma asym_less:
\<open>cmp b a \<noteq> Less\<close> if \<open>cmp a b = Less\<close>
using that greater_iff_sym_less by force
lemma asym_greater:
\<open>cmp b a \<noteq> Greater\<close> if \<open>cmp a b = Greater\<close>
using that greater_iff_sym_less by force
lemma asymp_less:
\<open>asymp (\<lambda>a b. cmp a b = Less)\<close>
using irreflp_less by (auto dest: asym_less)
lemma asymp_greater:
\<open>asymp (\<lambda>a b. cmp a b = Greater)\<close>
using irreflp_greater by (auto dest: asym_greater)
lemma trans_equiv_less:
\<open>cmp a c = Less\<close> if \<open>cmp a b = Equiv\<close> and \<open>cmp b c = Less\<close>
using that
by (metis (full_types) comp.exhaust greater_iff_sym_less trans_equiv trans_less)
lemma trans_less_equiv:
\<open>cmp a c = Less\<close> if \<open>cmp a b = Less\<close> and \<open>cmp b c = Equiv\<close>
using that
by (metis (full_types) comp.exhaust greater_iff_sym_less trans_equiv trans_less)
lemma trans_equiv_greater:
\<open>cmp a c = Greater\<close> if \<open>cmp a b = Equiv\<close> and \<open>cmp b c = Greater\<close>
using that by (simp add: sym [of a b] greater_iff_sym_less trans_less_equiv)
lemma trans_greater_equiv:
\<open>cmp a c = Greater\<close> if \<open>cmp a b = Greater\<close> and \<open>cmp b c = Equiv\<close>
using that by (simp add: sym [of b c] greater_iff_sym_less trans_equiv_less)
lemma transp_less:
\<open>transp (\<lambda>a b. cmp a b = Less)\<close>
by (rule transpI) (fact trans_less)
lemma transp_greater:
\<open>transp (\<lambda>a b. cmp a b = Greater)\<close>
by (rule transpI) (fact trans_greater)
text \<open>The reflexive part\<close>
lemma reflp_not_less:
\<open>reflp (\<lambda>a b. cmp a b \<noteq> Less)\<close>
by (rule reflpI) simp
lemma reflp_not_greater:
\<open>reflp (\<lambda>a b. cmp a b \<noteq> Greater)\<close>
by (rule reflpI) simp
lemma quasisym_not_less:
\<open>cmp a b = Equiv\<close> if \<open>cmp a b \<noteq> Less\<close> and \<open>cmp b a \<noteq> Less\<close>
using that comp.exhaust greater_iff_sym_less by auto
lemma quasisym_not_greater:
\<open>cmp a b = Equiv\<close> if \<open>cmp a b \<noteq> Greater\<close> and \<open>cmp b a \<noteq> Greater\<close>
using that comp.exhaust greater_iff_sym_less by auto
lemma trans_not_less:
\<open>cmp a c \<noteq> Less\<close> if \<open>cmp a b \<noteq> Less\<close> \<open>cmp b c \<noteq> Less\<close>
using that by (metis comp.exhaust greater_iff_sym_less trans_equiv trans_less)
lemma trans_not_greater:
\<open>cmp a c \<noteq> Greater\<close> if \<open>cmp a b \<noteq> Greater\<close> \<open>cmp b c \<noteq> Greater\<close>
using that greater_iff_sym_less trans_not_less by blast
lemma transp_not_less:
\<open>transp (\<lambda>a b. cmp a b \<noteq> Less)\<close>
by (rule transpI) (fact trans_not_less)
lemma transp_not_greater:
\<open>transp (\<lambda>a b. cmp a b \<noteq> Greater)\<close>
by (rule transpI) (fact trans_not_greater)
text \<open>Substitution under equivalences\<close>
lemma equiv_subst_left:
\<open>cmp z y = comp \<longleftrightarrow> cmp x y = comp\<close> if \<open>cmp z x = Equiv\<close> for comp
proof -
from that have \<open>cmp x z = Equiv\<close>
by (simp add: sym)
with that show ?thesis
by (cases comp) (auto intro: trans_equiv trans_equiv_less trans_equiv_greater)
qed
lemma equiv_subst_right:
\<open>cmp x z = comp \<longleftrightarrow> cmp x y = comp\<close> if \<open>cmp z y = Equiv\<close> for comp
proof -
from that have \<open>cmp y z = Equiv\<close>
by (simp add: sym)
with that show ?thesis
by (cases comp) (auto intro: trans_equiv trans_less_equiv trans_greater_equiv)
qed
end
typedef 'a comparator = \<open>{cmp :: 'a \<Rightarrow> 'a \<Rightarrow> comp. comparator cmp}\<close>
morphisms compare Abs_comparator
proof -
have \<open>comparator (\<lambda>_ _. Equiv)\<close>
by standard simp_all
then show ?thesis
by auto
qed
setup_lifting type_definition_comparator
global_interpretation compare: comparator \<open>compare cmp\<close>
using compare [of cmp] by simp
lift_definition flat :: \<open>'a comparator\<close>
is \<open>\<lambda>_ _. Equiv\<close> by standard simp_all
instantiation comparator :: (linorder) default
begin
lift_definition default_comparator :: \<open>'a comparator\<close>
is \<open>\<lambda>x y. if x < y then Less else if x > y then Greater else Equiv\<close>
by standard (auto split: if_splits)
instance ..
end
lemma compare_default_eq_Less_iff [simp]:
\<open>compare default x y = Less \<longleftrightarrow> x < y\<close>
by transfer simp
lemma compare_default_eq_Equiv_iff [simp]:
\<open>compare default x y = Equiv \<longleftrightarrow> x = y\<close>
by transfer auto
lemma compare_default_eq_Greater_iff [simp]:
\<open>compare default x y = Greater \<longleftrightarrow> x > y\<close>
by transfer auto
text \<open>A rudimentary quickcheck setup\<close>
instantiation comparator :: (enum) equal
begin
lift_definition equal_comparator :: \<open>'a comparator \<Rightarrow> 'a comparator \<Rightarrow> bool\<close>
is \<open>\<lambda>f g. \<forall>x \<in> set Enum.enum. f x = g x\<close> .
instance
by (standard; transfer) (auto simp add: enum_UNIV)
end
lemma [code]:
\<open>HOL.equal cmp1 cmp2 \<longleftrightarrow> Enum.enum_all (\<lambda>x. compare cmp1 x = compare cmp2 x)\<close>
by transfer (simp add: enum_UNIV)
lemma [code nbe]:
\<open>HOL.equal (cmp :: 'a::enum comparator) cmp \<longleftrightarrow> True\<close>
by (fact equal_refl)
instantiation comparator :: ("{linorder, typerep}") full_exhaustive
begin
definition full_exhaustive_comparator ::
\<open>('a comparator \<times> (unit \<Rightarrow> term) \<Rightarrow> (bool \<times> term list) option)
\<Rightarrow> natural \<Rightarrow> (bool \<times> term list) option\<close>
where \<open>full_exhaustive_comparator f s =
Quickcheck_Exhaustive.orelse
(f (flat, (\<lambda>u. Code_Evaluation.Const (STR ''Comparator.flat'') TYPEREP('a comparator))))
(f (default, (\<lambda>u. Code_Evaluation.Const (STR ''HOL.default_class.default'') TYPEREP('a comparator))))\<close>
instance ..
end
subsection \<open>Fundamental comparator combinators\<close>
lift_definition reversed :: \<open>'a comparator \<Rightarrow> 'a comparator\<close>
is \<open>\<lambda>cmp a b. cmp b a\<close>
proof -
fix cmp :: \<open>'a \<Rightarrow> 'a \<Rightarrow> comp\<close>
assume \<open>comparator cmp\<close>
then interpret comparator cmp .
show \<open>comparator (\<lambda>a b. cmp b a)\<close>
by standard (auto intro: trans_equiv trans_less simp: greater_iff_sym_less)
qed
lemma compare_reversed_apply [simp]:
\<open>compare (reversed cmp) x y = compare cmp y x\<close>
by transfer simp
lift_definition key :: \<open>('b \<Rightarrow> 'a) \<Rightarrow> 'a comparator \<Rightarrow> 'b comparator\<close>
is \<open>\<lambda>f cmp a b. cmp (f a) (f b)\<close>
proof -
fix cmp :: \<open>'a \<Rightarrow> 'a \<Rightarrow> comp\<close> and f :: \<open>'b \<Rightarrow> 'a\<close>
assume \<open>comparator cmp\<close>
then interpret comparator cmp .
show \<open>comparator (\<lambda>a b. cmp (f a) (f b))\<close>
by standard (auto intro: trans_equiv trans_less simp: greater_iff_sym_less)
qed
lemma compare_key_apply [simp]:
\<open>compare (key f cmp) x y = compare cmp (f x) (f y)\<close>
by transfer simp
lift_definition prod_lex :: \<open>'a comparator \<Rightarrow> 'b comparator \<Rightarrow> ('a \<times> 'b) comparator\<close>
is \<open>\<lambda>f g (a, c) (b, d). case f a b of Less \<Rightarrow> Less | Equiv \<Rightarrow> g c d | Greater \<Rightarrow> Greater\<close>
proof -
fix f :: \<open>'a \<Rightarrow> 'a \<Rightarrow> comp\<close> and g :: \<open>'b \<Rightarrow> 'b \<Rightarrow> comp\<close>
assume \<open>comparator f\<close>
then interpret f: comparator f .
assume \<open>comparator g\<close>
then interpret g: comparator g .
define h where \<open>h = (\<lambda>(a, c) (b, d). case f a b of Less \<Rightarrow> Less | Equiv \<Rightarrow> g c d | Greater \<Rightarrow> Greater)\<close>
then have h_apply [simp]: \<open>h (a, c) (b, d) = (case f a b of Less \<Rightarrow> Less | Equiv \<Rightarrow> g c d | Greater \<Rightarrow> Greater)\<close> for a b c d
by simp
have h_equiv: \<open>h p q = Equiv \<longleftrightarrow> f (fst p) (fst q) = Equiv \<and> g (snd p) (snd q) = Equiv\<close> for p q
by (cases p; cases q) (simp split: comp.split)
have h_less: \<open>h p q = Less \<longleftrightarrow> f (fst p) (fst q) = Less \<or> f (fst p) (fst q) = Equiv \<and> g (snd p) (snd q) = Less\<close> for p q
by (cases p; cases q) (simp split: comp.split)
have h_greater: \<open>h p q = Greater \<longleftrightarrow> f (fst p) (fst q) = Greater \<or> f (fst p) (fst q) = Equiv \<and> g (snd p) (snd q) = Greater\<close> for p q
by (cases p; cases q) (simp split: comp.split)
have \<open>comparator h\<close>
apply standard
apply (simp_all add: h_equiv h_less h_greater f.greater_iff_sym_less g.greater_iff_sym_less f.sym g.sym)
apply (auto intro: f.trans_equiv g.trans_equiv f.trans_less g.trans_less f.trans_less_equiv f.trans_equiv_less)
done
then show \<open>comparator (\<lambda>(a, c) (b, d). case f a b of Less \<Rightarrow> Less
| Equiv \<Rightarrow> g c d
| Greater \<Rightarrow> Greater)\<close>
by (simp add: h_def)
qed
lemma compare_prod_lex_apply:
\<open>compare (prod_lex cmp1 cmp2) p q =
(case compare (key fst cmp1) p q of Less \<Rightarrow> Less | Equiv \<Rightarrow> compare (key snd cmp2) p q | Greater \<Rightarrow> Greater)\<close>
by transfer (simp add: split_def)
subsection \<open>Direct implementations for linear orders on selected types\<close>
definition comparator_bool :: \<open>bool comparator\<close>
where [simp, code_abbrev]: \<open>comparator_bool = default\<close>
lemma compare_comparator_bool [code abstract]:
\<open>compare comparator_bool = (\<lambda>p q.
if p then if q then Equiv else Greater
else if q then Less else Equiv)\<close>
by (auto simp add: fun_eq_iff)
definition raw_comparator_nat :: \<open>nat \<Rightarrow> nat \<Rightarrow> comp\<close>
where [simp]: \<open>raw_comparator_nat = compare default\<close>
lemma default_comparator_nat [simp, code]:
\<open>raw_comparator_nat (0::nat) 0 = Equiv\<close>
\<open>raw_comparator_nat (Suc m) 0 = Greater\<close>
\<open>raw_comparator_nat 0 (Suc n) = Less\<close>
\<open>raw_comparator_nat (Suc m) (Suc n) = raw_comparator_nat m n\<close>
by (transfer; simp)+
definition comparator_nat :: \<open>nat comparator\<close>
where [simp, code_abbrev]: \<open>comparator_nat = default\<close>
lemma compare_comparator_nat [code abstract]:
\<open>compare comparator_nat = raw_comparator_nat\<close>
by simp
definition comparator_linordered_group :: \<open>'a::linordered_ab_group_add comparator\<close>
where [simp, code_abbrev]: \<open>comparator_linordered_group = default\<close>
lemma comparator_linordered_group [code abstract]:
\<open>compare comparator_linordered_group = (\<lambda>a b.
let c = a - b in if c < 0 then Less
else if c = 0 then Equiv else Greater)\<close>
proof (rule ext)+
fix a b :: 'a
show \<open>compare comparator_linordered_group a b =
(let c = a - b in if c < 0 then Less
else if c = 0 then Equiv else Greater)\<close>
by (simp add: Let_def not_less) (transfer; auto)
qed
end