atomize: borrowed HOL version, which checks for both Trueprop
and == as main connective (avoids using wildcard)
(* Title: FOL/simpdata
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
Simplification data for FOL
*)
(*** Rewrite rules ***)
fun int_prove_fun s =
(writeln s;
prove_goal IFOL.thy s
(fn prems => [ (cut_facts_tac prems 1),
(Int.fast_tac 1) ]));
val conj_rews = map int_prove_fun
["P & True <-> P", "True & P <-> P",
"P & False <-> False", "False & P <-> False",
"P & P <-> P",
"P & ~P <-> False", "~P & P <-> False",
"(P & Q) & R <-> P & (Q & R)"];
val disj_rews = map int_prove_fun
["P | True <-> True", "True | P <-> True",
"P | False <-> P", "False | P <-> P",
"P | P <-> P",
"(P | Q) | R <-> P | (Q | R)"];
val not_rews = map int_prove_fun
["~(P|Q) <-> ~P & ~Q",
"~ False <-> True", "~ True <-> False"];
val imp_rews = map int_prove_fun
["(P --> False) <-> ~P", "(P --> True) <-> True",
"(False --> P) <-> True", "(True --> P) <-> P",
"(P --> P) <-> True", "(P --> ~P) <-> ~P"];
val iff_rews = map int_prove_fun
["(True <-> P) <-> P", "(P <-> True) <-> P",
"(P <-> P) <-> True",
"(False <-> P) <-> ~P", "(P <-> False) <-> ~P"];
val quant_rews = map int_prove_fun
["(ALL x.P) <-> P", "(EX x.P) <-> P"];
(*These are NOT supplied by default!*)
val distrib_rews = map int_prove_fun
["P & (Q | R) <-> P&Q | P&R",
"(Q | R) & P <-> Q&P | R&P",
"(P | Q --> R) <-> (P --> R) & (Q --> R)"];
(** Conversion into rewrite rules **)
fun gen_all th = forall_elim_vars (#maxidx(rep_thm th)+1) th;
(*Make atomic rewrite rules*)
fun atomize r =
case concl_of r of
Const("Trueprop",_) $ p =>
(case p of
Const("op -->",_)$_$_ => atomize(r RS mp)
| Const("op &",_)$_$_ => atomize(r RS conjunct1) @
atomize(r RS conjunct2)
| Const("All",_)$_ => atomize(r RS spec)
| Const("True",_) => [] (*True is DELETED*)
| Const("False",_) => [] (*should False do something?*)
| _ => [r])
| _ => [r];
val P_iff_F = int_prove_fun "~P ==> (P <-> False)";
val iff_reflection_F = P_iff_F RS iff_reflection;
val P_iff_T = int_prove_fun "P ==> (P <-> True)";
val iff_reflection_T = P_iff_T RS iff_reflection;
(*Make meta-equalities. The operator below is Trueprop*)
fun mk_meta_eq th = case concl_of th of
Const("==",_)$_$_ => th
| _ $ (Const("op =",_)$_$_) => th RS eq_reflection
| _ $ (Const("op <->",_)$_$_) => th RS iff_reflection
| _ $ (Const("Not",_)$_) => th RS iff_reflection_F
| _ => th RS iff_reflection_T;
structure Induction = InductionFun(struct val spec=IFOL.spec end);
open Simplifier Induction;
infix addcongs;
fun ss addcongs congs =
ss addeqcongs (congs RL [eq_reflection,iff_reflection]);
val IFOL_rews =
[refl RS P_iff_T] @ conj_rews @ disj_rews @ not_rews @
imp_rews @ iff_rews @ quant_rews;
val notFalseI = int_prove_fun "~False";
val triv_rls = [TrueI,refl,iff_refl,notFalseI];
val IFOL_ss =
empty_ss
setmksimps (map mk_meta_eq o atomize o gen_all)
setsolver (fn prems => resolve_tac (triv_rls@prems)
ORELSE' assume_tac
ORELSE' etac FalseE)
setsubgoaler asm_simp_tac
addsimps IFOL_rews
addcongs [imp_cong];
(*Classical version...*)
fun prove_fun s =
(writeln s;
prove_goal FOL.thy s
(fn prems => [ (cut_facts_tac prems 1),
(Cla.fast_tac FOL_cs 1) ]));
val cla_rews = map prove_fun
["~(P&Q) <-> ~P | ~Q",
"P | ~P", "~P | P",
"~ ~ P <-> P", "(~P --> P) <-> P"];
val FOL_ss = IFOL_ss addsimps cla_rews;
(*** case splitting ***)
val meta_iffD =
prove_goal FOL.thy "[| P==Q; Q |] ==> P"
(fn [prem1,prem2] => [rewtac prem1, rtac prem2 1])
fun split_tac splits =
mk_case_split_tac meta_iffD (map mk_meta_eq splits);