(* Title: ZF/intr_elim.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
Introduction/elimination rule module -- for Inductive/Coinductive Definitions
*)
signature INDUCTIVE_ARG = (** Description of a (co)inductive def **)
sig
val thy : theory (*new theory with inductive defs*)
val monos : thm list (*monotonicity of each M operator*)
val con_defs : thm list (*definitions of the constructors*)
val type_intrs : thm list (*type-checking intro rules*)
val type_elims : thm list (*type-checking elim rules*)
end;
signature INDUCTIVE_I = (** Terms read from the theory section **)
sig
val rec_tms : term list (*the recursive sets*)
val dom_sum : term (*their common domain*)
val intr_tms : term list (*terms for the introduction rules*)
end;
signature INTR_ELIM =
sig
val thy : theory (*copy of input theory*)
val defs : thm list (*definitions made in thy*)
val bnd_mono : thm (*monotonicity for the lfp definition*)
val dom_subset : thm (*inclusion of recursive set in dom*)
val intrs : thm list (*introduction rules*)
val elim : thm (*case analysis theorem*)
val mk_cases : thm list -> string -> thm (*generates case theorems*)
end;
signature INTR_ELIM_AUX = (** Used to make induction rules **)
sig
val raw_induct : thm (*raw induction rule from Fp.induct*)
val rec_names : string list (*names of recursive sets*)
end;
(*prove intr/elim rules for a fixedpoint definition*)
functor Intr_elim_Fun
(structure Inductive: sig include INDUCTIVE_ARG INDUCTIVE_I end
and Fp: FP and Pr : PR and Su : SU)
: sig include INTR_ELIM INTR_ELIM_AUX end =
let
val rec_names = map (#1 o dest_Const o head_of) Inductive.rec_tms;
val big_rec_name = space_implode "_" rec_names;
val _ = deny (big_rec_name mem map ! (stamps_of_thy Inductive.thy))
("Definition " ^ big_rec_name ^
" would clash with the theory of the same name!");
(*fetch fp definitions from the theory*)
val big_rec_def::part_rec_defs =
map (get_def Inductive.thy)
(case rec_names of [_] => rec_names | _ => big_rec_name::rec_names);
val sign = sign_of Inductive.thy;
(********)
val _ = writeln " Proving monotonicity...";
val Const("==",_) $ _ $ (_ $ dom_sum $ fp_abs) =
big_rec_def |> rep_thm |> #prop |> Logic.unvarify;
val bnd_mono =
prove_goalw_cterm []
(cterm_of sign (Ind_Syntax.mk_tprop (Fp.bnd_mono $ dom_sum $ fp_abs)))
(fn _ =>
[rtac (Collect_subset RS bnd_monoI) 1,
REPEAT (ares_tac (basic_monos @ Inductive.monos) 1)]);
val dom_subset = standard (big_rec_def RS Fp.subs);
val unfold = standard ([big_rec_def, bnd_mono] MRS Fp.Tarski);
(********)
val _ = writeln " Proving the introduction rules...";
(*Mutual recursion? Helps to derive subset rules for the individual sets.*)
val Part_trans =
case rec_names of
[_] => asm_rl
| _ => standard (Part_subset RS subset_trans);
(*To type-check recursive occurrences of the inductive sets, possibly
enclosed in some monotonic operator M.*)
val rec_typechecks =
[dom_subset] RL (asm_rl :: ([Part_trans] RL Inductive.monos)) RL [subsetD];
(*Type-checking is hardest aspect of proof;
disjIn selects the correct disjunct after unfolding*)
fun intro_tacsf disjIn prems =
[(*insert prems and underlying sets*)
cut_facts_tac prems 1,
DETERM (stac unfold 1),
REPEAT (resolve_tac [Part_eqI,CollectI] 1),
(*Now 2-3 subgoals: typechecking, the disjunction, perhaps equality.*)
rtac disjIn 2,
(*Not ares_tac, since refl must be tried before any equality assumptions;
backtracking may occur if the premises have extra variables!*)
DEPTH_SOLVE_1 (resolve_tac [refl,exI,conjI] 2 APPEND assume_tac 2),
(*Now solve the equations like Tcons(a,f) = Inl(?b4)*)
rewrite_goals_tac Inductive.con_defs,
REPEAT (rtac refl 2),
(*Typechecking; this can fail*)
REPEAT (FIRSTGOAL ( dresolve_tac rec_typechecks
ORELSE' eresolve_tac (asm_rl::PartE::SigmaE2::
Inductive.type_elims)
ORELSE' hyp_subst_tac)),
DEPTH_SOLVE (swap_res_tac (SigmaI::subsetI::Inductive.type_intrs) 1)];
(*combines disjI1 and disjI2 to access the corresponding nested disjunct...*)
val mk_disj_rls =
let fun f rl = rl RS disjI1
and g rl = rl RS disjI2
in accesses_bal(f, g, asm_rl) end;
val intrs = ListPair.map (uncurry (prove_goalw_cterm part_rec_defs))
(map (cterm_of sign) Inductive.intr_tms,
map intro_tacsf (mk_disj_rls(length Inductive.intr_tms)));
(********)
val _ = writeln " Proving the elimination rule...";
(*Breaks down logical connectives in the monotonic function*)
val basic_elim_tac =
REPEAT (SOMEGOAL (eresolve_tac (Ind_Syntax.elim_rls @ Su.free_SEs)
ORELSE' bound_hyp_subst_tac))
THEN prune_params_tac
(*Mutual recursion: collapse references to Part(D,h)*)
THEN fold_tac part_rec_defs;
in
struct
val thy = Inductive.thy
and defs = big_rec_def :: part_rec_defs
and bnd_mono = bnd_mono
and dom_subset = dom_subset
and intrs = intrs;
val elim = rule_by_tactic basic_elim_tac
(unfold RS Ind_Syntax.equals_CollectD);
(*Applies freeness of the given constructors, which *must* be unfolded by
the given defs. Cannot simply use the local con_defs because
con_defs=[] for inference systems.
String s should have the form t:Si where Si is an inductive set*)
fun mk_cases defs s =
rule_by_tactic (rewrite_goals_tac defs THEN
basic_elim_tac THEN
fold_tac defs)
(assume_read Inductive.thy s RS elim)
|> standard;
val raw_induct = standard ([big_rec_def, bnd_mono] MRS Fp.induct)
and rec_names = rec_names
end
end;