(* Title: HOL/UNITY/ListOrder
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1998 University of Cambridge
Lists are partially ordered by Charpentier's Generalized Prefix Relation
(xs,ys) : genPrefix(r)
if ys = xs' @ zs where length xs = length xs'
and corresponding elements of xs, xs' are pairwise related by r
Also overloads <= and < for lists!
Based on Lex/Prefix
*)
header {*The Prefix Ordering on Lists*}
theory ListOrder
imports Main
begin
inductive_set
genPrefix :: "('a * 'a)set => ('a list * 'a list)set"
for r :: "('a * 'a)set"
where
Nil: "([],[]) : genPrefix(r)"
| prepend: "[| (xs,ys) : genPrefix(r); (x,y) : r |] ==>
(x#xs, y#ys) : genPrefix(r)"
| append: "(xs,ys) : genPrefix(r) ==> (xs, ys@zs) : genPrefix(r)"
instantiation list :: (type) ord
begin
definition
prefix_def: "xs <= zs \<longleftrightarrow> (xs, zs) : genPrefix Id"
definition
strict_prefix_def: "xs < zs \<longleftrightarrow> xs \<le> zs \<and> \<not> zs \<le> (xs :: 'a list)"
instance ..
(*Constants for the <= and >= relations, used below in translations*)
end
constdefs
Le :: "(nat*nat) set"
"Le == {(x,y). x <= y}"
Ge :: "(nat*nat) set"
"Ge == {(x,y). y <= x}"
abbreviation
pfixLe :: "[nat list, nat list] => bool" (infixl "pfixLe" 50) where
"xs pfixLe ys == (xs,ys) : genPrefix Le"
abbreviation
pfixGe :: "[nat list, nat list] => bool" (infixl "pfixGe" 50) where
"xs pfixGe ys == (xs,ys) : genPrefix Ge"
subsection{*preliminary lemmas*}
lemma Nil_genPrefix [iff]: "([], xs) : genPrefix r"
by (cut_tac genPrefix.Nil [THEN genPrefix.append], auto)
lemma genPrefix_length_le: "(xs,ys) : genPrefix r ==> length xs <= length ys"
by (erule genPrefix.induct, auto)
lemma cdlemma:
"[| (xs', ys'): genPrefix r |]
==> (ALL x xs. xs' = x#xs --> (EX y ys. ys' = y#ys & (x,y) : r & (xs, ys) : genPrefix r))"
apply (erule genPrefix.induct, blast, blast)
apply (force intro: genPrefix.append)
done
(*As usual converting it to an elimination rule is tiresome*)
lemma cons_genPrefixE [elim!]:
"[| (x#xs, zs): genPrefix r;
!!y ys. [| zs = y#ys; (x,y) : r; (xs, ys) : genPrefix r |] ==> P
|] ==> P"
by (drule cdlemma, simp, blast)
lemma Cons_genPrefix_Cons [iff]:
"((x#xs,y#ys) : genPrefix r) = ((x,y) : r & (xs,ys) : genPrefix r)"
by (blast intro: genPrefix.prepend)
subsection{*genPrefix is a partial order*}
lemma refl_genPrefix: "reflexive r ==> reflexive (genPrefix r)"
apply (unfold refl_def, auto)
apply (induct_tac "x")
prefer 2 apply (blast intro: genPrefix.prepend)
apply (blast intro: genPrefix.Nil)
done
lemma genPrefix_refl [simp]: "reflexive r ==> (l,l) : genPrefix r"
by (erule reflD [OF refl_genPrefix UNIV_I])
lemma genPrefix_mono: "r<=s ==> genPrefix r <= genPrefix s"
apply clarify
apply (erule genPrefix.induct)
apply (auto intro: genPrefix.append)
done
(** Transitivity **)
(*A lemma for proving genPrefix_trans_O*)
lemma append_genPrefix [rule_format]:
"ALL zs. (xs @ ys, zs) : genPrefix r --> (xs, zs) : genPrefix r"
by (induct_tac "xs", auto)
(*Lemma proving transitivity and more*)
lemma genPrefix_trans_O [rule_format]:
"(x, y) : genPrefix r
==> ALL z. (y,z) : genPrefix s --> (x, z) : genPrefix (s O r)"
apply (erule genPrefix.induct)
prefer 3 apply (blast dest: append_genPrefix)
prefer 2 apply (blast intro: genPrefix.prepend, blast)
done
lemma genPrefix_trans [rule_format]:
"[| (x,y) : genPrefix r; (y,z) : genPrefix r; trans r |]
==> (x,z) : genPrefix r"
apply (rule trans_O_subset [THEN genPrefix_mono, THEN subsetD])
apply assumption
apply (blast intro: genPrefix_trans_O)
done
lemma prefix_genPrefix_trans [rule_format]:
"[| x<=y; (y,z) : genPrefix r |] ==> (x, z) : genPrefix r"
apply (unfold prefix_def)
apply (subst R_O_Id [symmetric], erule genPrefix_trans_O, assumption)
done
lemma genPrefix_prefix_trans [rule_format]:
"[| (x,y) : genPrefix r; y<=z |] ==> (x,z) : genPrefix r"
apply (unfold prefix_def)
apply (subst Id_O_R [symmetric], erule genPrefix_trans_O, assumption)
done
lemma trans_genPrefix: "trans r ==> trans (genPrefix r)"
by (blast intro: transI genPrefix_trans)
(** Antisymmetry **)
lemma genPrefix_antisym [rule_format]:
"[| (xs,ys) : genPrefix r; antisym r |]
==> (ys,xs) : genPrefix r --> xs = ys"
apply (erule genPrefix.induct)
txt{*Base case*}
apply blast
txt{*prepend case*}
apply (simp add: antisym_def)
txt{*append case is the hardest*}
apply clarify
apply (subgoal_tac "length zs = 0", force)
apply (drule genPrefix_length_le)+
apply (simp del: length_0_conv)
done
lemma antisym_genPrefix: "antisym r ==> antisym (genPrefix r)"
by (blast intro: antisymI genPrefix_antisym)
subsection{*recursion equations*}
lemma genPrefix_Nil [simp]: "((xs, []) : genPrefix r) = (xs = [])"
apply (induct_tac "xs")
prefer 2 apply blast
apply simp
done
lemma same_genPrefix_genPrefix [simp]:
"reflexive r ==> ((xs@ys, xs@zs) : genPrefix r) = ((ys,zs) : genPrefix r)"
apply (unfold refl_def)
apply (induct_tac "xs")
apply (simp_all (no_asm_simp))
done
lemma genPrefix_Cons:
"((xs, y#ys) : genPrefix r) =
(xs=[] | (EX z zs. xs=z#zs & (z,y) : r & (zs,ys) : genPrefix r))"
by (case_tac "xs", auto)
lemma genPrefix_take_append:
"[| reflexive r; (xs,ys) : genPrefix r |]
==> (xs@zs, take (length xs) ys @ zs) : genPrefix r"
apply (erule genPrefix.induct)
apply (frule_tac [3] genPrefix_length_le)
apply (simp_all (no_asm_simp) add: diff_is_0_eq [THEN iffD2])
done
lemma genPrefix_append_both:
"[| reflexive r; (xs,ys) : genPrefix r; length xs = length ys |]
==> (xs@zs, ys @ zs) : genPrefix r"
apply (drule genPrefix_take_append, assumption)
apply (simp add: take_all)
done
(*NOT suitable for rewriting since [y] has the form y#ys*)
lemma append_cons_eq: "xs @ y # ys = (xs @ [y]) @ ys"
by auto
lemma aolemma:
"[| (xs,ys) : genPrefix r; reflexive r |]
==> length xs < length ys --> (xs @ [ys ! length xs], ys) : genPrefix r"
apply (erule genPrefix.induct)
apply blast
apply simp
txt{*Append case is hardest*}
apply simp
apply (frule genPrefix_length_le [THEN le_imp_less_or_eq])
apply (erule disjE)
apply (simp_all (no_asm_simp) add: neq_Nil_conv nth_append)
apply (blast intro: genPrefix.append, auto)
apply (subst append_cons_eq, fast intro: genPrefix_append_both genPrefix.append)
done
lemma append_one_genPrefix:
"[| (xs,ys) : genPrefix r; length xs < length ys; reflexive r |]
==> (xs @ [ys ! length xs], ys) : genPrefix r"
by (blast intro: aolemma [THEN mp])
(** Proving the equivalence with Charpentier's definition **)
lemma genPrefix_imp_nth [rule_format]:
"ALL i ys. i < length xs
--> (xs, ys) : genPrefix r --> (xs ! i, ys ! i) : r"
apply (induct_tac "xs", auto)
apply (case_tac "i", auto)
done
lemma nth_imp_genPrefix [rule_format]:
"ALL ys. length xs <= length ys
--> (ALL i. i < length xs --> (xs ! i, ys ! i) : r)
--> (xs, ys) : genPrefix r"
apply (induct_tac "xs")
apply (simp_all (no_asm_simp) add: less_Suc_eq_0_disj all_conj_distrib)
apply clarify
apply (case_tac "ys")
apply (force+)
done
lemma genPrefix_iff_nth:
"((xs,ys) : genPrefix r) =
(length xs <= length ys & (ALL i. i < length xs --> (xs!i, ys!i) : r))"
apply (blast intro: genPrefix_length_le genPrefix_imp_nth nth_imp_genPrefix)
done
subsection{*The type of lists is partially ordered*}
declare reflexive_Id [iff]
antisym_Id [iff]
trans_Id [iff]
lemma prefix_refl [iff]: "xs <= (xs::'a list)"
by (simp add: prefix_def)
lemma prefix_trans: "!!xs::'a list. [| xs <= ys; ys <= zs |] ==> xs <= zs"
apply (unfold prefix_def)
apply (blast intro: genPrefix_trans)
done
lemma prefix_antisym: "!!xs::'a list. [| xs <= ys; ys <= xs |] ==> xs = ys"
apply (unfold prefix_def)
apply (blast intro: genPrefix_antisym)
done
lemma prefix_less_le_not_le: "!!xs::'a list. (xs < zs) = (xs <= zs & \<not> zs \<le> xs)"
by (unfold strict_prefix_def, auto)
instance list :: (type) order
by (intro_classes,
(assumption | rule prefix_refl prefix_trans prefix_antisym
prefix_less_le_not_le)+)
(*Monotonicity of "set" operator WRT prefix*)
lemma set_mono: "xs <= ys ==> set xs <= set ys"
apply (unfold prefix_def)
apply (erule genPrefix.induct, auto)
done
(** recursion equations **)
lemma Nil_prefix [iff]: "[] <= xs"
apply (unfold prefix_def)
apply (simp add: Nil_genPrefix)
done
lemma prefix_Nil [simp]: "(xs <= []) = (xs = [])"
apply (unfold prefix_def)
apply (simp add: genPrefix_Nil)
done
lemma Cons_prefix_Cons [simp]: "(x#xs <= y#ys) = (x=y & xs<=ys)"
by (simp add: prefix_def)
lemma same_prefix_prefix [simp]: "(xs@ys <= xs@zs) = (ys <= zs)"
by (simp add: prefix_def)
lemma append_prefix [iff]: "(xs@ys <= xs) = (ys <= [])"
by (insert same_prefix_prefix [of xs ys "[]"], simp)
lemma prefix_appendI [simp]: "xs <= ys ==> xs <= ys@zs"
apply (unfold prefix_def)
apply (erule genPrefix.append)
done
lemma prefix_Cons:
"(xs <= y#ys) = (xs=[] | (? zs. xs=y#zs & zs <= ys))"
by (simp add: prefix_def genPrefix_Cons)
lemma append_one_prefix:
"[| xs <= ys; length xs < length ys |] ==> xs @ [ys ! length xs] <= ys"
apply (unfold prefix_def)
apply (simp add: append_one_genPrefix)
done
lemma prefix_length_le: "xs <= ys ==> length xs <= length ys"
apply (unfold prefix_def)
apply (erule genPrefix_length_le)
done
lemma splemma: "xs<=ys ==> xs~=ys --> length xs < length ys"
apply (unfold prefix_def)
apply (erule genPrefix.induct, auto)
done
lemma strict_prefix_length_less: "xs < ys ==> length xs < length ys"
apply (unfold strict_prefix_def)
apply (blast intro: splemma [THEN mp])
done
lemma mono_length: "mono length"
by (blast intro: monoI prefix_length_le)
(*Equivalence to the definition used in Lex/Prefix.thy*)
lemma prefix_iff: "(xs <= zs) = (EX ys. zs = xs@ys)"
apply (unfold prefix_def)
apply (auto simp add: genPrefix_iff_nth nth_append)
apply (rule_tac x = "drop (length xs) zs" in exI)
apply (rule nth_equalityI)
apply (simp_all (no_asm_simp) add: nth_append)
done
lemma prefix_snoc [simp]: "(xs <= ys@[y]) = (xs = ys@[y] | xs <= ys)"
apply (simp add: prefix_iff)
apply (rule iffI)
apply (erule exE)
apply (rename_tac "zs")
apply (rule_tac xs = zs in rev_exhaust)
apply simp
apply clarify
apply (simp del: append_assoc add: append_assoc [symmetric], force)
done
lemma prefix_append_iff:
"(xs <= ys@zs) = (xs <= ys | (? us. xs = ys@us & us <= zs))"
apply (rule_tac xs = zs in rev_induct)
apply force
apply (simp del: append_assoc add: append_assoc [symmetric], force)
done
(*Although the prefix ordering is not linear, the prefixes of a list
are linearly ordered.*)
lemma common_prefix_linear [rule_format]:
"!!zs::'a list. xs <= zs --> ys <= zs --> xs <= ys | ys <= xs"
by (rule_tac xs = zs in rev_induct, auto)
subsection{*pfixLe, pfixGe: properties inherited from the translations*}
(** pfixLe **)
lemma reflexive_Le [iff]: "reflexive Le"
by (unfold refl_def Le_def, auto)
lemma antisym_Le [iff]: "antisym Le"
by (unfold antisym_def Le_def, auto)
lemma trans_Le [iff]: "trans Le"
by (unfold trans_def Le_def, auto)
lemma pfixLe_refl [iff]: "x pfixLe x"
by simp
lemma pfixLe_trans: "[| x pfixLe y; y pfixLe z |] ==> x pfixLe z"
by (blast intro: genPrefix_trans)
lemma pfixLe_antisym: "[| x pfixLe y; y pfixLe x |] ==> x = y"
by (blast intro: genPrefix_antisym)
lemma prefix_imp_pfixLe: "xs<=ys ==> xs pfixLe ys"
apply (unfold prefix_def Le_def)
apply (blast intro: genPrefix_mono [THEN [2] rev_subsetD])
done
lemma reflexive_Ge [iff]: "reflexive Ge"
by (unfold refl_def Ge_def, auto)
lemma antisym_Ge [iff]: "antisym Ge"
by (unfold antisym_def Ge_def, auto)
lemma trans_Ge [iff]: "trans Ge"
by (unfold trans_def Ge_def, auto)
lemma pfixGe_refl [iff]: "x pfixGe x"
by simp
lemma pfixGe_trans: "[| x pfixGe y; y pfixGe z |] ==> x pfixGe z"
by (blast intro: genPrefix_trans)
lemma pfixGe_antisym: "[| x pfixGe y; y pfixGe x |] ==> x = y"
by (blast intro: genPrefix_antisym)
lemma prefix_imp_pfixGe: "xs<=ys ==> xs pfixGe ys"
apply (unfold prefix_def Ge_def)
apply (blast intro: genPrefix_mono [THEN [2] rev_subsetD])
done
end