(* Title: HOL/BNF/Tools/bnf_tactics.ML
Author: Dmitriy Traytel, TU Muenchen
Author: Jasmin Blanchette, TU Muenchen
Copyright 2012
General tactics for bounded natural functors.
*)
signature BNF_TACTICS =
sig
include CTR_SUGAR_GENERAL_TACTICS
val fo_rtac: thm -> Proof.context -> int -> tactic
val mk_flatten_assoc_tac: (int -> tactic) -> thm -> thm -> thm -> tactic
val mk_rotate_eq_tac: (int -> tactic) -> thm -> thm -> thm -> thm -> ''a list -> ''a list ->
int -> tactic
val mk_pointfree: Proof.context -> thm -> thm
val mk_Abs_bij_thm: Proof.context -> thm -> thm -> thm
val mk_Abs_inj_thm: thm -> thm
val mk_ctor_or_dtor_rel_tac:
thm -> thm list -> thm list -> thm -> {prems: 'a, context: Proof.context} -> tactic
val mk_map_comp_id_tac: thm -> tactic
val mk_map_cong0_tac: int -> thm -> {prems: 'a, context: Proof.context} -> tactic
val mk_map_cong0L_tac: int -> thm -> thm -> tactic
end;
structure BNF_Tactics : BNF_TACTICS =
struct
open Ctr_Sugar_General_Tactics
open BNF_Util
(*stolen from Christian Urban's Cookbook*)
fun fo_rtac thm = Subgoal.FOCUS (fn {concl, ...} =>
let
val concl_pat = Drule.strip_imp_concl (cprop_of thm)
val insts = Thm.first_order_match (concl_pat, concl)
in
rtac (Drule.instantiate_normalize insts thm) 1
end);
(*transforms f (g x) = h (k x) into f o g = h o k using first order matches for f, g, h, and k*)
fun mk_pointfree ctxt thm = thm
|> Thm.prop_of |> HOLogic.dest_Trueprop |> HOLogic.dest_eq
|> pairself (dest_comb #> apsnd (dest_comb #> fst) #> HOLogic.mk_comp)
|> mk_Trueprop_eq
|> (fn goal => Goal.prove_sorry ctxt [] [] goal
(K (rtac ext 1 THEN unfold_thms_tac ctxt [o_apply, mk_sym thm] THEN rtac refl 1)))
|> Thm.close_derivation;
(* Theorems for open typedefs with UNIV as representing set *)
fun mk_Abs_inj_thm inj = inj OF (replicate 2 UNIV_I);
fun mk_Abs_bij_thm ctxt Abs_inj_thm surj = rule_by_tactic ctxt ((rtac surj THEN' etac exI) 1)
(Abs_inj_thm RS @{thm bijI});
(* General tactic generators *)
(*applies assoc rule to the lhs of an equation as long as possible*)
fun mk_flatten_assoc_tac refl_tac trans assoc cong = rtac trans 1 THEN
REPEAT_DETERM (CHANGED ((FIRST' [rtac trans THEN' rtac assoc, rtac cong THEN' refl_tac]) 1)) THEN
refl_tac 1;
(*proves two sides of an equation to be equal assuming both are flattened and rhs can be obtained
from lhs by the given permutation of monoms*)
fun mk_rotate_eq_tac refl_tac trans assoc com cong =
let
fun gen_tac [] [] = K all_tac
| gen_tac [x] [y] = if x = y then refl_tac else error "mk_rotate_eq_tac: different lists"
| gen_tac (x :: xs) (y :: ys) = if x = y
then rtac cong THEN' refl_tac THEN' gen_tac xs ys
else rtac trans THEN' rtac com THEN'
K (mk_flatten_assoc_tac refl_tac trans assoc cong) THEN'
gen_tac (xs @ [x]) (y :: ys)
| gen_tac _ _ = error "mk_rotate_eq_tac: different lists";
in
gen_tac
end;
fun mk_ctor_or_dtor_rel_tac srel_def IJrel_defs IJsrel_defs dtor_srel {context = ctxt, prems = _} =
unfold_thms_tac ctxt IJrel_defs THEN
rtac (unfold_thms ctxt (IJrel_defs @ IJsrel_defs @
@{thms Collect_mem_eq mem_Collect_eq fst_conv snd_conv}) dtor_srel RS trans) 1 THEN
unfold_thms_tac ctxt (srel_def ::
@{thms pair_collapse Collect_mem_eq mem_Collect_eq prod.cases fst_conv snd_conv
split_conv}) THEN
rtac refl 1;
fun mk_map_comp_id_tac map_comp0 =
(rtac trans THEN' rtac map_comp0 THEN' REPEAT_DETERM o stac @{thm o_id} THEN' rtac refl) 1;
fun mk_map_cong0_tac m map_cong0 {context = ctxt, prems = _} =
EVERY' [rtac mp, rtac map_cong0,
CONJ_WRAP' (K (rtac ballI THEN' Goal.assume_rule_tac ctxt)) (1 upto m)] 1;
fun mk_map_cong0L_tac passive map_cong0 map_id =
(rtac trans THEN' rtac map_cong0 THEN' EVERY' (replicate passive (rtac refl))) 1 THEN
REPEAT_DETERM (EVERY' [rtac trans, etac bspec, atac, rtac sym, rtac @{thm id_apply}] 1) THEN
rtac map_id 1;
end;