section \<open>Section 10.4\<close>
theory Ex1
imports "../LCF"
begin
axiomatization
P :: "'a \<Rightarrow> tr" and
G :: "'a \<Rightarrow> 'a" and
H :: "'a \<Rightarrow> 'a" and
K :: "('a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a)"
where
P_strict: "P(UU) = UU" and
K: "K = (\<lambda>h x. P(x) \<Rightarrow> x | h(h(G(x))))" and
H: "H = FIX(K)"
declare P_strict [simp] K [simp]
lemma H_unfold: "H = K(H)"
apply (simplesubst H)
apply (rule FIX_eq [symmetric])
done
lemma H_strict [simp]: "H(UU)=UU"
apply (simplesubst H_unfold)
apply simp
done
lemma H_idemp_lemma: "\<forall>x. H(FIX(K,x)) = FIX(K,x)"
apply (induct K)
apply simp
apply (simp split: COND_cases_iff)
apply (intro strip)
apply (subst H_unfold)
apply simp
done
lemma H_idemp: "\<forall>x. H(H(x)) = H(x)"
apply (rule H_idemp_lemma [folded H])
done
end