(* Title: ZF/Update.thy
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1998 University of Cambridge
Function updates: like theory Map, but for ordinary functions
*)
open Update;
Goal "f(x:=y) ` z = (if z=x then y else f`z)";
by (simp_tac (simpset() addsimps [update_def]) 1);
by (case_tac "z : domain(f)" 1);
by (Asm_simp_tac 1);
by (asm_simp_tac (simpset() addsimps [apply_0]) 1);
qed "update_apply";
Addsimps [update_apply];
Goalw [update_def] "[| f`x = y; f: Pi(A,B); x: A |] ==> f(x:=y) = f";
by (asm_simp_tac (simpset() addsimps [domain_of_fun, cons_absorb]) 1);
by (rtac fun_extension 1);
by (best_tac (claset() addIs [apply_type, if_type, lam_type]) 1);
by (assume_tac 1);
by (Asm_simp_tac 1);
qed "update_idem";
(* [| f: Pi(A, B); x:A |] ==> f(x := f`x) = f *)
Addsimps [refl RS update_idem];
Goalw [update_def] "domain(f(x:=y)) = cons(x, domain(f))";
by (Asm_simp_tac 1);
qed "domain_update";
Addsimps [domain_update];
Goalw [update_def] "[| f: A -> B; x : A; y: B |] ==> f(x:=y) : A -> B";
by (asm_simp_tac (simpset() addsimps [domain_of_fun, cons_absorb,
apply_funtype, lam_type]) 1);
qed "update_type";