author | wenzelm |
Tue, 23 Dec 2008 00:56:03 +0100 | |
changeset 29152 | 89b0803404d7 |
parent 28952 | 15a4b2cf8c34 |
child 41959 | b460124855b8 |
permissions | -rw-r--r-- |
(* Title: HOL/ex/Arithmetic_Series_Complex Author: Benjamin Porter, 2006 *) header {* Arithmetic Series for Reals *} theory Arithmetic_Series_Complex imports Complex_Main begin lemma arith_series_real: "(2::real) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) = of_nat n * (a + (a + of_nat(n - 1)*d))" proof - have "((1::real) + 1) * (\<Sum>i\<in>{..<n}. a + of_nat(i)*d) = of_nat(n) * (a + (a + of_nat(n - 1)*d))" by (rule arith_series_general) thus ?thesis by simp qed end