(* Title: HOL/ex/Numeral.thy
ID: $Id$
Author: Florian Haftmann
An experimental alternative numeral representation.
*)
theory Numeral
imports Int Inductive
begin
subsection {* The @{text num} type *}
text {*
We construct @{text num} as a copy of strictly positive
natural numbers.
*}
typedef (open) num = "\<lambda>n\<Colon>nat. n > 0"
morphisms nat_of_num num_of_nat_abs
by (auto simp add: mem_def)
text {*
A totalized abstraction function. It is not entirely clear
whether this is really useful.
*}
definition num_of_nat :: "nat \<Rightarrow> num" where
"num_of_nat n = (if n = 0 then num_of_nat_abs 1 else num_of_nat_abs n)"
lemma num_cases [case_names nat, cases type: num]:
assumes "(\<And>n\<Colon>nat. m = num_of_nat n \<Longrightarrow> 0 < n \<Longrightarrow> P)"
shows P
apply (rule num_of_nat_abs_cases)
apply (unfold mem_def)
using assms unfolding num_of_nat_def
apply auto
done
lemma num_of_nat_zero: "num_of_nat 0 = num_of_nat 1"
by (simp add: num_of_nat_def)
lemma num_of_nat_inverse: "nat_of_num (num_of_nat n) = (if n = 0 then 1 else n)"
apply (simp add: num_of_nat_def)
apply (subst num_of_nat_abs_inverse)
apply (auto simp add: mem_def num_of_nat_abs_inverse)
done
lemma num_of_nat_inject:
"num_of_nat m = num_of_nat n \<longleftrightarrow> m = n \<or> (m = 0 \<or> m = 1) \<and> (n = 0 \<or> n = 1)"
by (auto simp add: num_of_nat_def num_of_nat_abs_inject [unfolded mem_def])
lemma split_num_all:
"(\<And>m. PROP P m) \<equiv> (\<And>n. PROP P (num_of_nat n))"
proof
fix n
assume "\<And>m\<Colon>num. PROP P m"
then show "PROP P (num_of_nat n)" .
next
fix m
have nat_of_num: "\<And>m. nat_of_num m \<noteq> 0"
using nat_of_num by (auto simp add: mem_def)
have nat_of_num_inverse: "\<And>m. num_of_nat (nat_of_num m) = m"
by (auto simp add: num_of_nat_def nat_of_num_inverse nat_of_num)
assume "\<And>n. PROP P (num_of_nat n)"
then have "PROP P (num_of_nat (nat_of_num m))" .
then show "PROP P m" unfolding nat_of_num_inverse .
qed
subsection {* Digit representation for @{typ num} *}
instantiation num :: "{semiring, monoid_mult}"
begin
definition one_num :: num where
[code del]: "1 = num_of_nat 1"
definition plus_num :: "num \<Rightarrow> num \<Rightarrow> num" where
[code del]: "m + n = num_of_nat (nat_of_num m + nat_of_num n)"
definition times_num :: "num \<Rightarrow> num \<Rightarrow> num" where
[code del]: "m * n = num_of_nat (nat_of_num m * nat_of_num n)"
definition Dig0 :: "num \<Rightarrow> num" where
[code del]: "Dig0 n = n + n"
definition Dig1 :: "num \<Rightarrow> num" where
[code del]: "Dig1 n = n + n + 1"
instance proof
qed (simp_all add: one_num_def plus_num_def times_num_def
split_num_all num_of_nat_inverse num_of_nat_zero add_ac mult_ac nat_distrib)
end
text {*
The following proofs seem horribly complicated.
Any room for simplification!?
*}
lemma nat_dig_cases [case_names 0 1 dig0 dig1]:
fixes n :: nat
assumes "n = 0 \<Longrightarrow> P"
and "n = 1 \<Longrightarrow> P"
and "\<And>m. m > 0 \<Longrightarrow> n = m + m \<Longrightarrow> P"
and "\<And>m. m > 0 \<Longrightarrow> n = Suc (m + m) \<Longrightarrow> P"
shows P
using assms proof (induct n)
case 0 then show ?case by simp
next
case (Suc n)
show P proof (rule Suc.hyps)
assume "n = 0"
then have "Suc n = 1" by simp
then show P by (rule Suc.prems(2))
next
assume "n = 1"
have "1 > (0\<Colon>nat)" by simp
moreover from `n = 1` have "Suc n = 1 + 1" by simp
ultimately show P by (rule Suc.prems(3))
next
fix m
assume "0 < m" and "n = m + m"
note `0 < m`
moreover from `n = m + m` have "Suc n = Suc (m + m)" by simp
ultimately show P by (rule Suc.prems(4))
next
fix m
assume "0 < m" and "n = Suc (m + m)"
have "0 < Suc m" by simp
moreover from `n = Suc (m + m)` have "Suc n = Suc m + Suc m" by simp
ultimately show P by (rule Suc.prems(3))
qed
qed
lemma num_induct_raw:
fixes n :: nat
assumes not0: "n > 0"
assumes "P 1"
and "\<And>n. n > 0 \<Longrightarrow> P n \<Longrightarrow> P (n + n)"
and "\<And>n. n > 0 \<Longrightarrow> P n \<Longrightarrow> P (Suc (n + n))"
shows "P n"
using not0 proof (induct n rule: less_induct)
case (less n)
show "P n" proof (cases n rule: nat_dig_cases)
case 0 then show ?thesis using less by simp
next
case 1 then show ?thesis using assms by simp
next
case (dig0 m)
then show ?thesis apply simp
apply (rule assms(3)) apply assumption
apply (rule less)
apply simp_all
done
next
case (dig1 m)
then show ?thesis apply simp
apply (rule assms(4)) apply assumption
apply (rule less)
apply simp_all
done
qed
qed
lemma num_of_nat_Suc: "num_of_nat (Suc n) = (if n = 0 then 1 else num_of_nat n + 1)"
by (cases n) (auto simp add: one_num_def plus_num_def num_of_nat_inverse)
lemma num_induct [case_names 1 Suc, induct type: num]:
fixes P :: "num \<Rightarrow> bool"
assumes 1: "P 1"
and Suc: "\<And>n. P n \<Longrightarrow> P (n + 1)"
shows "P n"
proof (cases n)
case (nat m) then show ?thesis by (induct m arbitrary: n)
(auto simp: num_of_nat_Suc intro: 1 Suc split: split_if_asm)
qed
rep_datatype "1::num" Dig0 Dig1 proof -
fix P m
assume 1: "P 1"
and Dig0: "\<And>m. P m \<Longrightarrow> P (Dig0 m)"
and Dig1: "\<And>m. P m \<Longrightarrow> P (Dig1 m)"
obtain n where "0 < n" and m: "m = num_of_nat n"
by (cases m) auto
from `0 < n` have "P (num_of_nat n)" proof (induct n rule: num_induct_raw)
case 1 from `0 < n` show ?case .
next
case 2 with 1 show ?case by (simp add: one_num_def)
next
case (3 n) then have "P (num_of_nat n)" by auto
then have "P (Dig0 (num_of_nat n))" by (rule Dig0)
with 3 show ?case by (simp add: Dig0_def plus_num_def num_of_nat_inverse)
next
case (4 n) then have "P (num_of_nat n)" by auto
then have "P (Dig1 (num_of_nat n))" by (rule Dig1)
with 4 show ?case by (simp add: Dig1_def one_num_def plus_num_def num_of_nat_inverse)
qed
with m show "P m" by simp
next
fix m n
show "Dig0 m = Dig0 n \<longleftrightarrow> m = n"
apply (cases m) apply (cases n)
by (auto simp add: Dig0_def plus_num_def num_of_nat_inverse num_of_nat_inject)
next
fix m n
show "Dig1 m = Dig1 n \<longleftrightarrow> m = n"
apply (cases m) apply (cases n)
by (auto simp add: Dig1_def plus_num_def num_of_nat_inverse num_of_nat_inject)
next
fix n
show "1 \<noteq> Dig0 n"
apply (cases n)
by (auto simp add: Dig0_def one_num_def plus_num_def num_of_nat_inverse num_of_nat_inject)
next
fix n
show "1 \<noteq> Dig1 n"
apply (cases n)
by (auto simp add: Dig1_def one_num_def plus_num_def num_of_nat_inverse num_of_nat_inject)
next
fix m n
have "\<And>n m. n + n \<noteq> Suc (m + m)"
proof -
fix n m
show "n + n \<noteq> Suc (m + m)"
proof (induct m arbitrary: n)
case 0 then show ?case by (cases n) simp_all
next
case (Suc m) then show ?case by (cases n) simp_all
qed
qed
then show "Dig0 n \<noteq> Dig1 m"
apply (cases n) apply (cases m)
by (auto simp add: Dig0_def Dig1_def one_num_def plus_num_def num_of_nat_inverse num_of_nat_inject)
qed
text {*
From now on, there are two possible models for @{typ num}:
as positive naturals (rules @{text "num_induct"}, @{text "num_cases"})
and as digit representation (rules @{text "num.induct"}, @{text "num.cases"}).
It is not entirely clear in which context it is better to use
the one or the other, or whether the construction should be reversed.
*}
subsection {* Binary numerals *}
text {*
We embed binary representations into a generic algebraic
structure using @{text of_num}
*}
ML {*
structure DigSimps =
NamedThmsFun(val name = "numeral"; val description = "Simplification rules for numerals")
*}
setup DigSimps.setup
class semiring_numeral = semiring + monoid_mult
begin
primrec of_num :: "num \<Rightarrow> 'a" where
of_num_one [numeral]: "of_num 1 = 1"
| "of_num (Dig0 n) = of_num n + of_num n"
| "of_num (Dig1 n) = of_num n + of_num n + 1"
declare of_num.simps [simp del]
end
text {*
ML stuff and syntax.
*}
ML {*
fun mk_num 1 = @{term "1::num"}
| mk_num k =
let
val (l, b) = Integer.div_mod k 2;
val bit = (if b = 0 then @{term Dig0} else @{term Dig1});
in bit $ (mk_num l) end;
fun dest_num @{term "1::num"} = 1
| dest_num (@{term Dig0} $ n) = 2 * dest_num n
| dest_num (@{term Dig1} $ n) = 2 * dest_num n + 1;
(*FIXME these have to gain proper context via morphisms phi*)
fun mk_numeral T k = Const (@{const_name of_num}, @{typ num} --> T)
$ mk_num k
fun dest_numeral (Const (@{const_name of_num}, Type ("fun", [@{typ num}, T])) $ t) =
(T, dest_num t)
*}
syntax
"_Numerals" :: "xnum \<Rightarrow> 'a" ("_")
parse_translation {*
let
fun num_of_int n = if n > 0 then case IntInf.quotRem (n, 2)
of (0, 1) => Const (@{const_name HOL.one}, dummyT)
| (n, 0) => Const (@{const_name Dig0}, dummyT) $ num_of_int n
| (n, 1) => Const (@{const_name Dig1}, dummyT) $ num_of_int n
else raise Match;
fun numeral_tr [Free (num, _)] =
let
val {leading_zeros, value, ...} = Syntax.read_xnum num;
val _ = leading_zeros = 0 andalso value > 0
orelse error ("Bad numeral: " ^ num);
in Const (@{const_name of_num}, @{typ num} --> dummyT) $ num_of_int value end
| numeral_tr ts = raise TERM ("numeral_tr", ts);
in [("_Numerals", numeral_tr)] end
*}
typed_print_translation {*
let
fun dig b n = b + 2 * n;
fun int_of_num' (Const (@{const_syntax Dig0}, _) $ n) =
dig 0 (int_of_num' n)
| int_of_num' (Const (@{const_syntax Dig1}, _) $ n) =
dig 1 (int_of_num' n)
| int_of_num' (Const (@{const_syntax HOL.one}, _)) = 1;
fun num_tr' show_sorts T [n] =
let
val k = int_of_num' n;
val t' = Syntax.const "_Numerals" $ Syntax.free ("#" ^ string_of_int k);
in case T
of Type ("fun", [_, T']) =>
if not (! show_types) andalso can Term.dest_Type T' then t'
else Syntax.const Syntax.constrainC $ t' $ Syntax.term_of_typ show_sorts T'
| T' => if T' = dummyT then t' else raise Match
end;
in [(@{const_syntax of_num}, num_tr')] end
*}
subsection {* Numeral operations *}
text {*
First, addition and multiplication on digits.
*}
lemma Dig_plus [numeral, simp, code]:
"1 + 1 = Dig0 1"
"1 + Dig0 m = Dig1 m"
"1 + Dig1 m = Dig0 (m + 1)"
"Dig0 n + 1 = Dig1 n"
"Dig0 n + Dig0 m = Dig0 (n + m)"
"Dig0 n + Dig1 m = Dig1 (n + m)"
"Dig1 n + 1 = Dig0 (n + 1)"
"Dig1 n + Dig0 m = Dig1 (n + m)"
"Dig1 n + Dig1 m = Dig0 (n + m + 1)"
by (simp_all add: add_ac Dig0_def Dig1_def)
lemma Dig_times [numeral, simp, code]:
"1 * 1 = (1::num)"
"1 * Dig0 n = Dig0 n"
"1 * Dig1 n = Dig1 n"
"Dig0 n * 1 = Dig0 n"
"Dig0 n * Dig0 m = Dig0 (n * Dig0 m)"
"Dig0 n * Dig1 m = Dig0 (n * Dig1 m)"
"Dig1 n * 1 = Dig1 n"
"Dig1 n * Dig0 m = Dig0 (n * Dig0 m + m)"
"Dig1 n * Dig1 m = Dig1 (n * Dig1 m + m)"
by (simp_all add: left_distrib right_distrib add_ac Dig0_def Dig1_def)
text {*
@{const of_num} is a morphism.
*}
context semiring_numeral
begin
abbreviation "Num1 \<equiv> of_num 1"
text {*
Alas, there is still the duplication of @{term 1},
thought the duplicated @{term 0} has disappeared.
We could get rid of it by replacing the constructor
@{term 1} in @{typ num} by two constructors
@{text two} and @{text three}, resulting in a further
blow-up. But it could be worth the effort.
*}
lemma of_num_plus_one [numeral]:
"of_num n + 1 = of_num (n + 1)"
by (rule sym, induct n) (simp_all add: Dig_plus of_num.simps add_ac)
lemma of_num_one_plus [numeral]:
"1 + of_num n = of_num (n + 1)"
unfolding of_num_plus_one [symmetric] add_commute ..
lemma of_num_plus [numeral]:
"of_num m + of_num n = of_num (m + n)"
by (induct n rule: num_induct)
(simp_all add: Dig_plus of_num_one semigroup_add_class.add_assoc [symmetric, of m]
add_ac of_num_plus_one [symmetric])
lemma of_num_times_one [numeral]:
"of_num n * 1 = of_num n"
by simp
lemma of_num_one_times [numeral]:
"1 * of_num n = of_num n"
by simp
lemma of_num_times [numeral]:
"of_num m * of_num n = of_num (m * n)"
by (induct n rule: num_induct)
(simp_all add: of_num_plus [symmetric]
semiring_class.right_distrib right_distrib of_num_one)
end
text {*
Structures with a @{term 0}.
*}
context semiring_1
begin
subclass semiring_numeral ..
lemma of_nat_of_num [numeral]: "of_nat (of_num n) = of_num n"
by (induct n)
(simp_all add: semiring_numeral_class.of_num.simps of_num.simps add_ac)
declare of_nat_1 [numeral]
lemma Dig_plus_zero [numeral]:
"0 + 1 = 1"
"0 + of_num n = of_num n"
"1 + 0 = 1"
"of_num n + 0 = of_num n"
by simp_all
lemma Dig_times_zero [numeral]:
"0 * 1 = 0"
"0 * of_num n = 0"
"1 * 0 = 0"
"of_num n * 0 = 0"
by simp_all
end
lemma nat_of_num_of_num: "nat_of_num = of_num"
proof
fix n
have "of_num n = nat_of_num n" apply (induct n)
apply (simp_all add: of_num.simps)
using nat_of_num
apply (simp_all add: one_num_def plus_num_def Dig0_def Dig1_def num_of_nat_inverse mem_def)
done
then show "nat_of_num n = of_num n" by simp
qed
text {*
Equality.
*}
context semiring_char_0
begin
lemma of_num_eq_iff [numeral]:
"of_num m = of_num n \<longleftrightarrow> m = n"
unfolding of_nat_of_num [symmetric] nat_of_num_of_num [symmetric]
of_nat_eq_iff nat_of_num_inject ..
lemma of_num_eq_one_iff [numeral]:
"of_num n = 1 \<longleftrightarrow> n = 1"
proof -
have "of_num n = of_num 1 \<longleftrightarrow> n = 1" unfolding of_num_eq_iff ..
then show ?thesis by (simp add: of_num_one)
qed
lemma one_eq_of_num_iff [numeral]:
"1 = of_num n \<longleftrightarrow> n = 1"
unfolding of_num_eq_one_iff [symmetric] by auto
end
text {*
Comparisons. Could be perhaps more general than here.
*}
lemma (in ordered_semidom) of_num_pos: "0 < of_num n"
proof -
have "(0::nat) < of_num n"
by (induct n) (simp_all add: semiring_numeral_class.of_num.simps)
then have "of_nat 0 \<noteq> of_nat (of_num n)"
by (cases n) (simp_all only: semiring_numeral_class.of_num.simps of_nat_eq_iff)
then have "0 \<noteq> of_num n"
by (simp add: of_nat_of_num)
moreover have "0 \<le> of_nat (of_num n)" by simp
ultimately show ?thesis by (simp add: of_nat_of_num)
qed
instantiation num :: linorder
begin
definition less_eq_num :: "num \<Rightarrow> num \<Rightarrow> bool" where
[code del]: "m \<le> n \<longleftrightarrow> nat_of_num m \<le> nat_of_num n"
definition less_num :: "num \<Rightarrow> num \<Rightarrow> bool" where
[code del]: "m < n \<longleftrightarrow> nat_of_num m < nat_of_num n"
instance proof
qed (auto simp add: less_eq_num_def less_num_def
split_num_all num_of_nat_inverse num_of_nat_inject split: split_if_asm)
end
lemma less_eq_num_code [numeral, simp, code]:
"(1::num) \<le> n \<longleftrightarrow> True"
"Dig0 m \<le> 1 \<longleftrightarrow> False"
"Dig1 m \<le> 1 \<longleftrightarrow> False"
"Dig0 m \<le> Dig0 n \<longleftrightarrow> m \<le> n"
"Dig0 m \<le> Dig1 n \<longleftrightarrow> m \<le> n"
"Dig1 m \<le> Dig1 n \<longleftrightarrow> m \<le> n"
"Dig1 m \<le> Dig0 n \<longleftrightarrow> m < n"
using of_num_pos [of n, where ?'a = nat] of_num_pos [of m, where ?'a = nat]
by (auto simp add: less_eq_num_def less_num_def nat_of_num_of_num of_num.simps)
lemma less_num_code [numeral, simp, code]:
"m < (1::num) \<longleftrightarrow> False"
"(1::num) < 1 \<longleftrightarrow> False"
"1 < Dig0 n \<longleftrightarrow> True"
"1 < Dig1 n \<longleftrightarrow> True"
"Dig0 m < Dig0 n \<longleftrightarrow> m < n"
"Dig0 m < Dig1 n \<longleftrightarrow> m \<le> n"
"Dig1 m < Dig1 n \<longleftrightarrow> m < n"
"Dig1 m < Dig0 n \<longleftrightarrow> m < n"
using of_num_pos [of n, where ?'a = nat] of_num_pos [of m, where ?'a = nat]
by (auto simp add: less_eq_num_def less_num_def nat_of_num_of_num of_num.simps)
context ordered_semidom
begin
lemma of_num_less_eq_iff [numeral]: "of_num m \<le> of_num n \<longleftrightarrow> m \<le> n"
proof -
have "of_nat (of_num m) \<le> of_nat (of_num n) \<longleftrightarrow> m \<le> n"
unfolding less_eq_num_def nat_of_num_of_num of_nat_le_iff ..
then show ?thesis by (simp add: of_nat_of_num)
qed
lemma of_num_less_eq_one_iff [numeral]: "of_num n \<le> 1 \<longleftrightarrow> n = 1"
proof -
have "of_num n \<le> of_num 1 \<longleftrightarrow> n = 1"
by (cases n) (simp_all add: of_num_less_eq_iff)
then show ?thesis by (simp add: of_num_one)
qed
lemma one_less_eq_of_num_iff [numeral]: "1 \<le> of_num n"
proof -
have "of_num 1 \<le> of_num n"
by (cases n) (simp_all add: of_num_less_eq_iff)
then show ?thesis by (simp add: of_num_one)
qed
lemma of_num_less_iff [numeral]: "of_num m < of_num n \<longleftrightarrow> m < n"
proof -
have "of_nat (of_num m) < of_nat (of_num n) \<longleftrightarrow> m < n"
unfolding less_num_def nat_of_num_of_num of_nat_less_iff ..
then show ?thesis by (simp add: of_nat_of_num)
qed
lemma of_num_less_one_iff [numeral]: "\<not> of_num n < 1"
proof -
have "\<not> of_num n < of_num 1"
by (cases n) (simp_all add: of_num_less_iff)
then show ?thesis by (simp add: of_num_one)
qed
lemma one_less_of_num_iff [numeral]: "1 < of_num n \<longleftrightarrow> n \<noteq> 1"
proof -
have "of_num 1 < of_num n \<longleftrightarrow> n \<noteq> 1"
by (cases n) (simp_all add: of_num_less_iff)
then show ?thesis by (simp add: of_num_one)
qed
end
text {*
Structures with subtraction @{term "op -"}.
*}
text {* A decrement function *}
primrec dec :: "num \<Rightarrow> num" where
"dec 1 = 1"
| "dec (Dig0 n) = (case n of 1 \<Rightarrow> 1 | _ \<Rightarrow> Dig1 (dec n))"
| "dec (Dig1 n) = Dig0 n"
declare dec.simps [simp del, code del]
lemma Dig_dec [numeral, simp, code]:
"dec 1 = 1"
"dec (Dig0 1) = 1"
"dec (Dig0 (Dig0 n)) = Dig1 (dec (Dig0 n))"
"dec (Dig0 (Dig1 n)) = Dig1 (Dig0 n)"
"dec (Dig1 n) = Dig0 n"
by (simp_all add: dec.simps)
lemma Dig_dec_plus_one:
"dec n + 1 = (if n = 1 then Dig0 1 else n)"
by (induct n)
(auto simp add: Dig_plus dec.simps,
auto simp add: Dig_plus split: num.splits)
lemma Dig_one_plus_dec:
"1 + dec n = (if n = 1 then Dig0 1 else n)"
unfolding add_commute [of 1] Dig_dec_plus_one ..
class semiring_minus = semiring + minus + zero +
assumes minus_inverts_plus1: "a + b = c \<Longrightarrow> c - b = a"
assumes minus_minus_zero_inverts_plus1: "a + b = c \<Longrightarrow> b - c = 0 - a"
begin
lemma minus_inverts_plus2: "a + b = c \<Longrightarrow> c - a = b"
by (simp add: add_ac minus_inverts_plus1 [of b a])
lemma minus_minus_zero_inverts_plus2: "a + b = c \<Longrightarrow> a - c = 0 - b"
by (simp add: add_ac minus_minus_zero_inverts_plus1 [of b a])
end
class semiring_1_minus = semiring_1 + semiring_minus
begin
lemma Dig_of_num_pos:
assumes "k + n = m"
shows "of_num m - of_num n = of_num k"
using assms by (simp add: of_num_plus minus_inverts_plus1)
lemma Dig_of_num_zero:
shows "of_num n - of_num n = 0"
by (rule minus_inverts_plus1) simp
lemma Dig_of_num_neg:
assumes "k + m = n"
shows "of_num m - of_num n = 0 - of_num k"
by (rule minus_minus_zero_inverts_plus1) (simp add: of_num_plus assms)
lemmas Dig_plus_eval =
of_num_plus of_num_eq_iff Dig_plus refl [of "1::num", THEN eqTrueI] num.inject
simproc_setup numeral_minus ("of_num m - of_num n") = {*
let
(*TODO proper implicit use of morphism via pattern antiquotations*)
fun cdest_of_num ct = (snd o split_last o snd o Drule.strip_comb) ct;
fun cdest_minus ct = case (rev o snd o Drule.strip_comb) ct of [n, m] => (m, n);
fun attach_num ct = (dest_num (Thm.term_of ct), ct);
fun cdifference t = (pairself (attach_num o cdest_of_num) o cdest_minus) t;
val simplify = MetaSimplifier.rewrite false (map mk_meta_eq @{thms Dig_plus_eval});
fun cert ck cl cj = @{thm eqTrueE} OF [@{thm meta_eq_to_obj_eq} OF [simplify (Drule.list_comb (@{cterm "op = :: num \<Rightarrow> _"},
[Drule.list_comb (@{cterm "op + :: num \<Rightarrow> _"}, [ck, cl]), cj]))]];
in fn phi => fn _ => fn ct => case try cdifference ct
of NONE => (NONE)
| SOME ((k, ck), (l, cl)) => SOME (let val j = k - l in if j = 0
then MetaSimplifier.rewrite false [mk_meta_eq (Morphism.thm phi @{thm Dig_of_num_zero})] ct
else mk_meta_eq (let
val cj = Thm.cterm_of (Thm.theory_of_cterm ct) (mk_num (abs j));
in
(if j > 0 then (Morphism.thm phi @{thm Dig_of_num_pos}) OF [cert cj cl ck]
else (Morphism.thm phi @{thm Dig_of_num_neg}) OF [cert cj ck cl])
end) end)
end
*}
lemma Dig_of_num_minus_zero [numeral]:
"of_num n - 0 = of_num n"
by (simp add: minus_inverts_plus1)
lemma Dig_one_minus_zero [numeral]:
"1 - 0 = 1"
by (simp add: minus_inverts_plus1)
lemma Dig_one_minus_one [numeral]:
"1 - 1 = 0"
by (simp add: minus_inverts_plus1)
lemma Dig_of_num_minus_one [numeral]:
"of_num (Dig0 n) - 1 = of_num (dec (Dig0 n))"
"of_num (Dig1 n) - 1 = of_num (Dig0 n)"
by (auto intro: minus_inverts_plus1 simp add: Dig_dec_plus_one of_num.simps of_num_plus_one)
lemma Dig_one_minus_of_num [numeral]:
"1 - of_num (Dig0 n) = 0 - of_num (dec (Dig0 n))"
"1 - of_num (Dig1 n) = 0 - of_num (Dig0 n)"
by (auto intro: minus_minus_zero_inverts_plus1 simp add: Dig_dec_plus_one of_num.simps of_num_plus_one)
end
context ring_1
begin
subclass semiring_1_minus
proof qed (simp_all add: ring_simps)
lemma Dig_zero_minus_of_num [numeral]:
"0 - of_num n = - of_num n"
by simp
lemma Dig_zero_minus_one [numeral]:
"0 - 1 = - 1"
by simp
lemma Dig_uminus_uminus [numeral]:
"- (- of_num n) = of_num n"
by simp
lemma Dig_plus_uminus [numeral]:
"of_num m + - of_num n = of_num m - of_num n"
"- of_num m + of_num n = of_num n - of_num m"
"- of_num m + - of_num n = - (of_num m + of_num n)"
"of_num m - - of_num n = of_num m + of_num n"
"- of_num m - of_num n = - (of_num m + of_num n)"
"- of_num m - - of_num n = of_num n - of_num m"
by (simp_all add: diff_minus add_commute)
lemma Dig_times_uminus [numeral]:
"- of_num n * of_num m = - (of_num n * of_num m)"
"of_num n * - of_num m = - (of_num n * of_num m)"
"- of_num n * - of_num m = of_num n * of_num m"
by (simp_all add: minus_mult_left [symmetric] minus_mult_right [symmetric])
lemma of_int_of_num [numeral]: "of_int (of_num n) = of_num n"
by (induct n)
(simp_all only: of_num.simps semiring_numeral_class.of_num.simps of_int_add, simp_all)
declare of_int_1 [numeral]
end
text {*
Greetings to @{typ nat}.
*}
instance nat :: semiring_1_minus proof qed simp_all
lemma Suc_of_num [numeral]: "Suc (of_num n) = of_num (n + 1)"
unfolding of_num_plus_one [symmetric] by simp
lemma nat_number:
"1 = Suc 0"
"of_num 1 = Suc 0"
"of_num (Dig0 n) = Suc (of_num (dec (Dig0 n)))"
"of_num (Dig1 n) = Suc (of_num (Dig0 n))"
by (simp_all add: of_num.simps Dig_dec_plus_one Suc_of_num)
declare diff_0_eq_0 [numeral]
subsection {* Code generator setup for @{typ int} *}
definition Pls :: "num \<Rightarrow> int" where
[simp, code post]: "Pls n = of_num n"
definition Mns :: "num \<Rightarrow> int" where
[simp, code post]: "Mns n = - of_num n"
code_datatype "0::int" Pls Mns
lemmas [code inline] = Pls_def [symmetric] Mns_def [symmetric]
definition sub :: "num \<Rightarrow> num \<Rightarrow> int" where
[simp, code del]: "sub m n = (of_num m - of_num n)"
definition dup :: "int \<Rightarrow> int" where
[code del]: "dup k = 2 * k"
lemma Dig_sub [code]:
"sub 1 1 = 0"
"sub (Dig0 m) 1 = of_num (dec (Dig0 m))"
"sub (Dig1 m) 1 = of_num (Dig0 m)"
"sub 1 (Dig0 n) = - of_num (dec (Dig0 n))"
"sub 1 (Dig1 n) = - of_num (Dig0 n)"
"sub (Dig0 m) (Dig0 n) = dup (sub m n)"
"sub (Dig1 m) (Dig1 n) = dup (sub m n)"
"sub (Dig1 m) (Dig0 n) = dup (sub m n) + 1"
"sub (Dig0 m) (Dig1 n) = dup (sub m n) - 1"
apply (simp_all add: dup_def ring_simps)
apply (simp_all add: of_num_plus Dig_one_plus_dec)[4]
apply (simp_all add: of_num.simps)
done
lemma dup_code [code]:
"dup 0 = 0"
"dup (Pls n) = Pls (Dig0 n)"
"dup (Mns n) = Mns (Dig0 n)"
by (simp_all add: dup_def of_num.simps)
lemma [code, code del]:
"(1 :: int) = 1"
"(op + :: int \<Rightarrow> int \<Rightarrow> int) = op +"
"(uminus :: int \<Rightarrow> int) = uminus"
"(op - :: int \<Rightarrow> int \<Rightarrow> int) = op -"
"(op * :: int \<Rightarrow> int \<Rightarrow> int) = op *"
"(eq_class.eq :: int \<Rightarrow> int \<Rightarrow> bool) = eq_class.eq"
"(op \<le> :: int \<Rightarrow> int \<Rightarrow> bool) = op \<le>"
"(op < :: int \<Rightarrow> int \<Rightarrow> bool) = op <"
by rule+
lemma one_int_code [code]:
"1 = Pls 1"
by (simp add: of_num_one)
lemma plus_int_code [code]:
"k + 0 = (k::int)"
"0 + l = (l::int)"
"Pls m + Pls n = Pls (m + n)"
"Pls m - Pls n = sub m n"
"Mns m + Mns n = Mns (m + n)"
"Mns m - Mns n = sub n m"
by (simp_all add: of_num_plus [symmetric])
lemma uminus_int_code [code]:
"uminus 0 = (0::int)"
"uminus (Pls m) = Mns m"
"uminus (Mns m) = Pls m"
by simp_all
lemma minus_int_code [code]:
"k - 0 = (k::int)"
"0 - l = uminus (l::int)"
"Pls m - Pls n = sub m n"
"Pls m - Mns n = Pls (m + n)"
"Mns m - Pls n = Mns (m + n)"
"Mns m - Mns n = sub n m"
by (simp_all add: of_num_plus [symmetric])
lemma times_int_code [code]:
"k * 0 = (0::int)"
"0 * l = (0::int)"
"Pls m * Pls n = Pls (m * n)"
"Pls m * Mns n = Mns (m * n)"
"Mns m * Pls n = Mns (m * n)"
"Mns m * Mns n = Pls (m * n)"
by (simp_all add: of_num_times [symmetric])
lemma eq_int_code [code]:
"eq_class.eq 0 (0::int) \<longleftrightarrow> True"
"eq_class.eq 0 (Pls l) \<longleftrightarrow> False"
"eq_class.eq 0 (Mns l) \<longleftrightarrow> False"
"eq_class.eq (Pls k) 0 \<longleftrightarrow> False"
"eq_class.eq (Pls k) (Pls l) \<longleftrightarrow> eq_class.eq k l"
"eq_class.eq (Pls k) (Mns l) \<longleftrightarrow> False"
"eq_class.eq (Mns k) 0 \<longleftrightarrow> False"
"eq_class.eq (Mns k) (Pls l) \<longleftrightarrow> False"
"eq_class.eq (Mns k) (Mns l) \<longleftrightarrow> eq_class.eq k l"
using of_num_pos [of l, where ?'a = int] of_num_pos [of k, where ?'a = int]
by (simp_all add: of_num_eq_iff eq)
lemma less_eq_int_code [code]:
"0 \<le> (0::int) \<longleftrightarrow> True"
"0 \<le> Pls l \<longleftrightarrow> True"
"0 \<le> Mns l \<longleftrightarrow> False"
"Pls k \<le> 0 \<longleftrightarrow> False"
"Pls k \<le> Pls l \<longleftrightarrow> k \<le> l"
"Pls k \<le> Mns l \<longleftrightarrow> False"
"Mns k \<le> 0 \<longleftrightarrow> True"
"Mns k \<le> Pls l \<longleftrightarrow> True"
"Mns k \<le> Mns l \<longleftrightarrow> l \<le> k"
using of_num_pos [of l, where ?'a = int] of_num_pos [of k, where ?'a = int]
by (simp_all add: of_num_less_eq_iff)
lemma less_int_code [code]:
"0 < (0::int) \<longleftrightarrow> False"
"0 < Pls l \<longleftrightarrow> True"
"0 < Mns l \<longleftrightarrow> False"
"Pls k < 0 \<longleftrightarrow> False"
"Pls k < Pls l \<longleftrightarrow> k < l"
"Pls k < Mns l \<longleftrightarrow> False"
"Mns k < 0 \<longleftrightarrow> True"
"Mns k < Pls l \<longleftrightarrow> True"
"Mns k < Mns l \<longleftrightarrow> l < k"
using of_num_pos [of l, where ?'a = int] of_num_pos [of k, where ?'a = int]
by (simp_all add: of_num_less_iff)
lemma [code inline del]: "(0::int) \<equiv> Numeral0" by simp
lemma [code inline del]: "(1::int) \<equiv> Numeral1" by simp
declare zero_is_num_zero [code inline del]
declare one_is_num_one [code inline del]
hide (open) const sub dup
subsection {* Numeral equations as default simplification rules *}
text {* TODO. Be more precise here with respect to subsumed facts. *}
declare (in semiring_numeral) numeral [simp]
declare (in semiring_1) numeral [simp]
declare (in semiring_char_0) numeral [simp]
declare (in ring_1) numeral [simp]
thm numeral
text {* Toy examples *}
definition "bar \<longleftrightarrow> #4 * #2 + #7 = (#8 :: nat) \<and> #4 * #2 + #7 \<ge> (#8 :: int) - #3"
code_thms bar
export_code bar in Haskell file -
export_code bar in OCaml module_name Foo file -
ML {* @{code bar} *}
end