Franz Regensburger's changes.
(* Title: HOLCF/one.thy
ID: $Id$
Author: Franz Regensburger
Copyright 1993 Technische Universitaet Muenchen
Lemmas for one.thy
*)
open One;
(* ------------------------------------------------------------------------ *)
(* Exhaustion and Elimination for type one *)
(* ------------------------------------------------------------------------ *)
val Exh_one = prove_goalw One.thy [one_def] "z=UU | z = one"
(fn prems =>
[
(res_inst_tac [("p","rep_one[z]")] liftE1 1),
(rtac disjI1 1),
(rtac ((abs_one_iso RS allI) RS ((rep_one_iso RS allI) RS iso_strict )
RS conjunct2 RS subst) 1),
(rtac (abs_one_iso RS subst) 1),
(etac cfun_arg_cong 1),
(rtac disjI2 1),
(rtac (abs_one_iso RS subst) 1),
(rtac cfun_arg_cong 1),
(rtac (unique_void2 RS subst) 1),
(atac 1)
]);
val oneE = prove_goal One.thy
"[| p=UU ==> Q; p = one ==>Q|] ==>Q"
(fn prems =>
[
(rtac (Exh_one RS disjE) 1),
(eresolve_tac prems 1),
(eresolve_tac prems 1)
]);
(* ------------------------------------------------------------------------ *)
(* distinctness for type one : stored in a list *)
(* ------------------------------------------------------------------------ *)
val dist_less_one = [
prove_goalw One.thy [one_def] "~one << UU"
(fn prems =>
[
(rtac classical3 1),
(rtac less_lift4b 1),
(rtac (rep_one_iso RS subst) 1),
(rtac (rep_one_iso RS subst) 1),
(rtac monofun_cfun_arg 1),
(etac ((abs_one_iso RS allI) RS ((rep_one_iso RS allI) RS iso_strict )
RS conjunct2 RS ssubst) 1)
])
];
val dist_eq_one = [prove_goal One.thy "~one=UU"
(fn prems =>
[
(rtac not_less2not_eq 1),
(resolve_tac dist_less_one 1)
])];
val dist_eq_one = dist_eq_one @ (map (fn thm => (thm RS not_sym)) dist_eq_one);
(* ------------------------------------------------------------------------ *)
(* one is flat *)
(* ------------------------------------------------------------------------ *)
val prems = goalw One.thy [flat_def] "flat(one)";
by (rtac allI 1);
by (rtac allI 1);
by (res_inst_tac [("p","x")] oneE 1);
by (asm_simp_tac ccc1_ss 1);
by (res_inst_tac [("p","y")] oneE 1);
by (asm_simp_tac (ccc1_ss addsimps dist_less_one) 1);
by (asm_simp_tac ccc1_ss 1);
val flat_one = result();
(* ------------------------------------------------------------------------ *)
(* properties of one_when *)
(* here I tried a generic prove procedure *)
(* ------------------------------------------------------------------------ *)
fun prover s = prove_goalw One.thy [one_when_def,one_def] s
(fn prems =>
[
(simp_tac (ccc1_ss addsimps [(rep_one_iso ),
(abs_one_iso RS allI) RS ((rep_one_iso RS allI)
RS iso_strict) RS conjunct1] )1)
]);
val one_when = map prover ["one_when[x][UU] = UU","one_when[x][one] = x"];