src/HOLCF/One.ML
author nipkow
Mon, 20 Jun 1994 12:03:16 +0200
changeset 430 89e1986125fe
parent 243 c22b85994e17
child 625 119391dd1d59
permissions -rw-r--r--
Franz Regensburger's changes.

(*  Title: 	HOLCF/one.thy
    ID:         $Id$
    Author: 	Franz Regensburger
    Copyright   1993 Technische Universitaet Muenchen

Lemmas for one.thy 
*)

open One;

(* ------------------------------------------------------------------------ *)
(* Exhaustion and Elimination for type one                                  *)
(* ------------------------------------------------------------------------ *)

val Exh_one = prove_goalw One.thy [one_def] "z=UU | z = one"
 (fn prems =>
	[
	(res_inst_tac [("p","rep_one[z]")] liftE1 1),
	(rtac disjI1 1),
	(rtac ((abs_one_iso RS allI) RS ((rep_one_iso RS allI) RS iso_strict )
		RS conjunct2 RS subst) 1),
	(rtac (abs_one_iso RS subst) 1),
	(etac cfun_arg_cong 1),
	(rtac disjI2 1),
	(rtac (abs_one_iso RS subst) 1),
	(rtac cfun_arg_cong 1),
	(rtac (unique_void2 RS subst) 1),
	(atac 1)
	]);

val oneE = prove_goal One.thy
	"[| p=UU ==> Q; p = one ==>Q|] ==>Q"
 (fn prems =>
	[
	(rtac (Exh_one RS disjE) 1),
	(eresolve_tac prems 1),
	(eresolve_tac prems 1)
	]);

(* ------------------------------------------------------------------------ *)
(* distinctness for type one : stored in a list                             *)
(* ------------------------------------------------------------------------ *)

val dist_less_one = [
prove_goalw One.thy [one_def] "~one << UU"
 (fn prems =>
	[
	(rtac classical3 1),
	(rtac less_lift4b 1),
	(rtac (rep_one_iso RS subst) 1),
	(rtac (rep_one_iso RS subst) 1),
	(rtac monofun_cfun_arg 1),
	(etac ((abs_one_iso RS allI) RS ((rep_one_iso RS allI) RS iso_strict ) 
		RS conjunct2 RS ssubst) 1)
	])
];

val  dist_eq_one = [prove_goal One.thy "~one=UU"
 (fn prems =>
	[
	(rtac not_less2not_eq 1),
	(resolve_tac dist_less_one 1)
	])];

val dist_eq_one = dist_eq_one @ (map (fn thm => (thm RS not_sym)) dist_eq_one);

(* ------------------------------------------------------------------------ *)
(* one is flat                                                              *)
(* ------------------------------------------------------------------------ *)

val prems = goalw One.thy [flat_def] "flat(one)";
by (rtac allI 1);
by (rtac allI 1);
by (res_inst_tac [("p","x")] oneE 1);
by (asm_simp_tac ccc1_ss  1);
by (res_inst_tac [("p","y")] oneE 1);
by (asm_simp_tac (ccc1_ss addsimps dist_less_one) 1);
by (asm_simp_tac ccc1_ss  1);
val flat_one = result();


(* ------------------------------------------------------------------------ *)
(* properties of one_when                                                   *)
(* here I tried a generic prove procedure                                   *)
(* ------------------------------------------------------------------------ *)

fun prover s =  prove_goalw One.thy [one_when_def,one_def] s
 (fn prems =>
	[
	(simp_tac (ccc1_ss addsimps [(rep_one_iso ),
	(abs_one_iso RS allI) RS ((rep_one_iso RS allI) 
	RS iso_strict) RS conjunct1] )1)
	]);

val one_when = map prover ["one_when[x][UU] = UU","one_when[x][one] = x"];