Adapted to new datatype package.
(* Title: HOL/Sum.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1991 University of Cambridge
For Sum.thy. The disjoint sum of two types
*)
open Sum;
(** Inl_Rep and Inr_Rep: Representations of the constructors **)
(*This counts as a non-emptiness result for admitting 'a+'b as a type*)
Goalw [Sum_def] "Inl_Rep(a) : Sum";
by (EVERY1 [rtac CollectI, rtac disjI1, rtac exI, rtac refl]);
qed "Inl_RepI";
Goalw [Sum_def] "Inr_Rep(b) : Sum";
by (EVERY1 [rtac CollectI, rtac disjI2, rtac exI, rtac refl]);
qed "Inr_RepI";
Goal "inj_on Abs_Sum Sum";
by (rtac inj_on_inverseI 1);
by (etac Abs_Sum_inverse 1);
qed "inj_on_Abs_Sum";
(** Distinctness of Inl and Inr **)
Goalw [Inl_Rep_def, Inr_Rep_def] "Inl_Rep(a) ~= Inr_Rep(b)";
by (EVERY1 [rtac notI,
etac (fun_cong RS fun_cong RS fun_cong RS iffE),
rtac (notE RS ccontr), etac (mp RS conjunct2),
REPEAT o (ares_tac [refl,conjI]) ]);
qed "Inl_Rep_not_Inr_Rep";
Goalw [Inl_def,Inr_def] "Inl(a) ~= Inr(b)";
by (rtac (inj_on_Abs_Sum RS inj_on_contraD) 1);
by (rtac Inl_Rep_not_Inr_Rep 1);
by (rtac Inl_RepI 1);
by (rtac Inr_RepI 1);
qed "Inl_not_Inr";
bind_thm ("Inr_not_Inl", Inl_not_Inr RS not_sym);
AddIffs [Inl_not_Inr, Inr_not_Inl];
bind_thm ("Inl_neq_Inr", Inl_not_Inr RS notE);
val Inr_neq_Inl = sym RS Inl_neq_Inr;
(** Injectiveness of Inl and Inr **)
val [major] = goalw Sum.thy [Inl_Rep_def] "Inl_Rep(a) = Inl_Rep(c) ==> a=c";
by (rtac (major RS fun_cong RS fun_cong RS fun_cong RS iffE) 1);
by (Blast_tac 1);
qed "Inl_Rep_inject";
val [major] = goalw Sum.thy [Inr_Rep_def] "Inr_Rep(b) = Inr_Rep(d) ==> b=d";
by (rtac (major RS fun_cong RS fun_cong RS fun_cong RS iffE) 1);
by (Blast_tac 1);
qed "Inr_Rep_inject";
Goalw [Inl_def] "inj(Inl)";
by (rtac injI 1);
by (etac (inj_on_Abs_Sum RS inj_onD RS Inl_Rep_inject) 1);
by (rtac Inl_RepI 1);
by (rtac Inl_RepI 1);
qed "inj_Inl";
val Inl_inject = inj_Inl RS injD;
Goalw [Inr_def] "inj(Inr)";
by (rtac injI 1);
by (etac (inj_on_Abs_Sum RS inj_onD RS Inr_Rep_inject) 1);
by (rtac Inr_RepI 1);
by (rtac Inr_RepI 1);
qed "inj_Inr";
val Inr_inject = inj_Inr RS injD;
Goal "(Inl(x)=Inl(y)) = (x=y)";
by (blast_tac (claset() addSDs [Inl_inject]) 1);
qed "Inl_eq";
Goal "(Inr(x)=Inr(y)) = (x=y)";
by (blast_tac (claset() addSDs [Inr_inject]) 1);
qed "Inr_eq";
AddIffs [Inl_eq, Inr_eq];
(*** Rules for the disjoint sum of two SETS ***)
(** Introduction rules for the injections **)
Goalw [sum_def] "a : A ==> Inl(a) : A Plus B";
by (Blast_tac 1);
qed "InlI";
Goalw [sum_def] "b : B ==> Inr(b) : A Plus B";
by (Blast_tac 1);
qed "InrI";
(** Elimination rules **)
val major::prems = goalw Sum.thy [sum_def]
"[| u: A Plus B; \
\ !!x. [| x:A; u=Inl(x) |] ==> P; \
\ !!y. [| y:B; u=Inr(y) |] ==> P \
\ |] ==> P";
by (rtac (major RS UnE) 1);
by (REPEAT (rtac refl 1
ORELSE eresolve_tac (prems@[imageE,ssubst]) 1));
qed "PlusE";
AddSIs [InlI, InrI];
AddSEs [PlusE];
(** sum_case -- the selection operator for sums **)
Goalw [sum_case_def] "sum_case f g (Inl x) = f(x)";
by (Blast_tac 1);
qed "sum_case_Inl";
Goalw [sum_case_def] "sum_case f g (Inr x) = g(x)";
by (Blast_tac 1);
qed "sum_case_Inr";
Addsimps [sum_case_Inl, sum_case_Inr];
(** Exhaustion rule for sums -- a degenerate form of induction **)
val prems = goalw Sum.thy [Inl_def,Inr_def]
"[| !!x::'a. s = Inl(x) ==> P; !!y::'b. s = Inr(y) ==> P \
\ |] ==> P";
by (rtac (rewrite_rule [Sum_def] Rep_Sum RS CollectE) 1);
by (REPEAT (eresolve_tac [disjE,exE] 1
ORELSE EVERY1 [resolve_tac prems,
etac subst,
rtac (Rep_Sum_inverse RS sym)]));
qed "sumE";
val prems = goal thy "[| !!x. P (Inl x); !!x. P (Inr x) |] ==> P x";
by (res_inst_tac [("s","x")] sumE 1);
by (ALLGOALS (hyp_subst_tac THEN' (resolve_tac prems)));
qed "sum_induct";
Goal "sum_case (%x::'a. f(Inl x)) (%y::'b. f(Inr y)) s = f(s)";
by (EVERY1 [res_inst_tac [("s","s")] sumE,
etac ssubst, rtac sum_case_Inl,
etac ssubst, rtac sum_case_Inr]);
qed "surjective_sum";
Goal "R(sum_case f g s) = \
\ ((! x. s = Inl(x) --> R(f(x))) & (! y. s = Inr(y) --> R(g(y))))";
by (res_inst_tac [("s","s")] sumE 1);
by Auto_tac;
qed "split_sum_case";
qed_goal "split_sum_case_asm" Sum.thy "P (sum_case f g s) = \
\ (~((? x. s = Inl x & ~P (f x)) | (? y. s = Inr y & ~P (g y))))"
(K [stac split_sum_case 1,
Blast_tac 1]);
(*Prevents simplification of f and g: much faster*)
qed_goal "sum_case_weak_cong" Sum.thy
"s=t ==> sum_case f g s = sum_case f g t"
(fn [prem] => [rtac (prem RS arg_cong) 1]);
(** Rules for the Part primitive **)
Goalw [Part_def] "[| a : A; a=h(b) |] ==> a : Part A h";
by (Blast_tac 1);
qed "Part_eqI";
val PartI = refl RSN (2,Part_eqI);
val major::prems = goalw Sum.thy [Part_def]
"[| a : Part A h; !!z. [| a : A; a=h(z) |] ==> P \
\ |] ==> P";
by (rtac (major RS IntE) 1);
by (etac CollectE 1);
by (etac exE 1);
by (REPEAT (ares_tac prems 1));
qed "PartE";
AddIs [Part_eqI];
AddSEs [PartE];
Goalw [Part_def] "Part A h <= A";
by (rtac Int_lower1 1);
qed "Part_subset";
Goal "A<=B ==> Part A h <= Part B h";
by (Blast_tac 1);
qed "Part_mono";
val basic_monos = basic_monos @ [Part_mono];
Goalw [Part_def] "a : Part A h ==> a : A";
by (etac IntD1 1);
qed "PartD1";
Goal "Part A (%x. x) = A";
by (Blast_tac 1);
qed "Part_id";
Goal "Part (A Int B) h = (Part A h) Int (Part B h)";
by (Blast_tac 1);
qed "Part_Int";
(*For inductive definitions*)
Goal "Part (A Int {x. P x}) h = (Part A h) Int {x. P x}";
by (Blast_tac 1);
qed "Part_Collect";