(* Title: HOL/Induct/Ordinals.thy
Author: Stefan Berghofer and Markus Wenzel, TU Muenchen
*)
header {* Ordinals *}
theory Ordinals imports Main begin
text {*
Some basic definitions of ordinal numbers. Draws an Agda
development (in Martin-L\"of type theory) by Peter Hancock (see
\url{http://www.dcs.ed.ac.uk/home/pgh/chat.html}).
*}
datatype ordinal =
Zero
| Succ ordinal
| Limit "nat => ordinal"
consts
pred :: "ordinal => nat => ordinal option"
primrec
"pred Zero n = None"
"pred (Succ a) n = Some a"
"pred (Limit f) n = Some (f n)"
consts
iter :: "('a => 'a) => nat => ('a => 'a)"
primrec
"iter f 0 = id"
"iter f (Suc n) = f \<circ> (iter f n)"
definition
OpLim :: "(nat => (ordinal => ordinal)) => (ordinal => ordinal)" where
"OpLim F a = Limit (\<lambda>n. F n a)"
definition
OpItw :: "(ordinal => ordinal) => (ordinal => ordinal)" ("\<Squnion>") where
"\<Squnion>f = OpLim (iter f)"
consts
cantor :: "ordinal => ordinal => ordinal"
primrec
"cantor a Zero = Succ a"
"cantor a (Succ b) = \<Squnion>(\<lambda>x. cantor x b) a"
"cantor a (Limit f) = Limit (\<lambda>n. cantor a (f n))"
consts
Nabla :: "(ordinal => ordinal) => (ordinal => ordinal)" ("\<nabla>")
primrec
"\<nabla>f Zero = f Zero"
"\<nabla>f (Succ a) = f (Succ (\<nabla>f a))"
"\<nabla>f (Limit h) = Limit (\<lambda>n. \<nabla>f (h n))"
definition
deriv :: "(ordinal => ordinal) => (ordinal => ordinal)" where
"deriv f = \<nabla>(\<Squnion>f)"
consts
veblen :: "ordinal => ordinal => ordinal"
primrec
"veblen Zero = \<nabla>(OpLim (iter (cantor Zero)))"
"veblen (Succ a) = \<nabla>(OpLim (iter (veblen a)))"
"veblen (Limit f) = \<nabla>(OpLim (\<lambda>n. veblen (f n)))"
definition "veb a = veblen a Zero"
definition "\<epsilon>\<^isub>0 = veb Zero"
definition "\<Gamma>\<^isub>0 = Limit (\<lambda>n. iter veb n Zero)"
end