author wenzelm
Sat, 04 Feb 2012 15:56:49 +0100
changeset 46288 8a2c5dc0b00e
parent 46287 0bb3d8ee5d25
child 46289 d0199d9f9c5b
permissions -rw-r--r--
more on explicit notation;

theory Inner_Syntax
imports Base Main

chapter {* Inner syntax --- the term language \label{ch:inner-syntax} *}

text {* The inner syntax of Isabelle provides concrete notation for
  the main entities of the logical framework, notably @{text
  "\<lambda>"}-terms with types and type classes.  Applications may either
  extend existing syntactic categories by additional notation, or
  define new sub-languages that are linked to the standard term
  language via some explicit markers.  For example @{verbatim
  FOO}~@{text "foo"} could embed the syntax corresponding for some
  user-defined nonterminal @{text "foo"} --- within the bounds of the
  given lexical syntax of Isabelle/Pure.

  The most basic way to specify concrete syntax for logical entities
  works via mixfix annotations (\secref{sec:mixfix}), which may be
  usually given as part of the original declaration or via explicit
  notation commands later on (\secref{sec:notation}).  This already
  covers many needs of concrete syntax without having to understand
  the full complexity of inner syntax layers.

  Further details of the syntax engine involves the classical
  distinction of lexical language versus context-free grammar (see
  \secref{sec:pure-syntax}), and various mechanisms for \emph{syntax
  translations} --- either as rewrite systems on first-order ASTs
  (\secref{sec:syn-trans}) or ML functions on ASTs or @{text
  "\<lambda>"}-terms that represent parse trees (\secref{sec:tr-funs}).

section {* Printing logical entities *}

subsection {* Diagnostic commands \label{sec:print-diag} *}

text {*
    @{command_def "typ"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
    @{command_def "term"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
    @{command_def "prop"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
    @{command_def "thm"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
    @{command_def "prf"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
    @{command_def "full_prf"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\
    @{command_def "pr"}@{text "\<^sup>*"} & : & @{text "any \<rightarrow>"} \\

  These diagnostic commands assist interactive development by printing
  internal logical entities in a human-readable fashion.

  @{rail "
    @@{command typ} @{syntax modes}? @{syntax type}
    @@{command term} @{syntax modes}? @{syntax term}
    @@{command prop} @{syntax modes}? @{syntax prop}
    @@{command thm} @{syntax modes}? @{syntax thmrefs}
    ( @@{command prf} | @@{command full_prf} ) @{syntax modes}? @{syntax thmrefs}?
    @@{command pr} @{syntax modes}? @{syntax nat}?

    @{syntax_def modes}: '(' (@{syntax name} + ) ')'


  \item @{command "typ"}~@{text \<tau>} reads and prints types of the
  meta-logic according to the current theory or proof context.

  \item @{command "term"}~@{text t} and @{command "prop"}~@{text \<phi>}
  read, type-check and print terms or propositions according to the
  current theory or proof context; the inferred type of @{text t} is
  output as well.  Note that these commands are also useful in
  inspecting the current environment of term abbreviations.

  \item @{command "thm"}~@{text "a\<^sub>1 \<dots> a\<^sub>n"} retrieves
  theorems from the current theory or proof context.  Note that any
  attributes included in the theorem specifications are applied to a
  temporary context derived from the current theory or proof; the
  result is discarded, i.e.\ attributes involved in @{text "a\<^sub>1,
  \<dots>, a\<^sub>n"} do not have any permanent effect.

  \item @{command "prf"} displays the (compact) proof term of the
  current proof state (if present), or of the given theorems. Note
  that this requires proof terms to be switched on for the current
  object logic (see the ``Proof terms'' section of the Isabelle
  reference manual for information on how to do this).

  \item @{command "full_prf"} is like @{command "prf"}, but displays
  the full proof term, i.e.\ also displays information omitted in the
  compact proof term, which is denoted by ``@{text _}'' placeholders

  \item @{command "pr"}~@{text "goals"} prints the current proof state
  (if present), including current facts and goals.  The optional limit
  arguments affect the number of goals to be displayed, which is
  initially 10.  Omitting limit value leaves the current setting


  All of the diagnostic commands above admit a list of @{text modes}
  to be specified, which is appended to the current print mode; see
  also \secref{sec:print-modes}.  Thus the output behavior may be
  modified according particular print mode features.  For example,
  @{command "pr"}~@{text "(latex xsymbols)"} would print the current
  proof state with mathematical symbols and special characters
  represented in {\LaTeX} source, according to the Isabelle style

  Note that antiquotations (cf.\ \secref{sec:antiq}) provide a more
  systematic way to include formal items into the printed text

subsection {* Details of printed content *}

text {*
    @{attribute_def show_types} & : & @{text attribute} & default @{text false} \\
    @{attribute_def show_sorts} & : & @{text attribute} & default @{text false} \\
    @{attribute_def show_consts} & : & @{text attribute} & default @{text false} \\
    @{attribute_def show_abbrevs} & : & @{text attribute} & default @{text true} \\
    @{attribute_def show_brackets} & : & @{text attribute} & default @{text false} \\
    @{attribute_def names_long} & : & @{text attribute} & default @{text false} \\
    @{attribute_def names_short} & : & @{text attribute} & default @{text false} \\
    @{attribute_def names_unique} & : & @{text attribute} & default @{text true} \\
    @{attribute_def eta_contract} & : & @{text attribute} & default @{text true} \\
    @{attribute_def goals_limit} & : & @{text attribute} & default @{text 10} \\
    @{attribute_def show_main_goal} & : & @{text attribute} & default @{text false} \\
    @{attribute_def show_hyps} & : & @{text attribute} & default @{text false} \\
    @{attribute_def show_tags} & : & @{text attribute} & default @{text false} \\
    @{attribute_def show_question_marks} & : & @{text attribute} & default @{text true} \\

  These configuration options control the detail of information that
  is displayed for types, terms, theorems, goals etc.  See also


  \item @{attribute show_types} and @{attribute show_sorts} control
  printing of type constraints for term variables, and sort
  constraints for type variables.  By default, neither of these are
  shown in output.  If @{attribute show_sorts} is enabled, types are
  always shown as well.

  Note that displaying types and sorts may explain why a polymorphic
  inference rule fails to resolve with some goal, or why a rewrite
  rule does not apply as expected.

  \item @{attribute show_consts} controls printing of types of
  constants when displaying a goal state.

  Note that the output can be enormous, because polymorphic constants
  often occur at several different type instances.

  \item @{attribute show_abbrevs} controls folding of constant

  \item @{attribute show_brackets} controls bracketing in pretty
  printed output.  If enabled, all sub-expressions of the pretty
  printing tree will be parenthesized, even if this produces malformed
  term syntax!  This crude way of showing the internal structure of
  pretty printed entities may occasionally help to diagnose problems
  with operator priorities, for example.

  \item @{attribute names_long}, @{attribute names_short}, and
  @{attribute names_unique} control the way of printing fully
  qualified internal names in external form.  See also
  \secref{sec:antiq} for the document antiquotation options of the
  same names.

  \item @{attribute eta_contract} controls @{text "\<eta>"}-contracted
  printing of terms.

  The @{text \<eta>}-contraction law asserts @{prop "(\<lambda>x. f x) \<equiv> f"},
  provided @{text x} is not free in @{text f}.  It asserts
  \emph{extensionality} of functions: @{prop "f \<equiv> g"} if @{prop "f x \<equiv>
  g x"} for all @{text x}.  Higher-order unification frequently puts
  terms into a fully @{text \<eta>}-expanded form.  For example, if @{text
  F} has type @{text "(\<tau> \<Rightarrow> \<tau>) \<Rightarrow> \<tau>"} then its expanded form is @{term
  "\<lambda>h. F (\<lambda>x. h x)"}.

  Enabling @{attribute eta_contract} makes Isabelle perform @{text
  \<eta>}-contractions before printing, so that @{term "\<lambda>h. F (\<lambda>x. h x)"}
  appears simply as @{text F}.

  Note that the distinction between a term and its @{text \<eta>}-expanded
  form occasionally matters.  While higher-order resolution and
  rewriting operate modulo @{text "\<alpha>\<beta>\<eta>"}-conversion, some other tools
  might look at terms more discretely.

  \item @{attribute goals_limit} controls the maximum number of
  subgoals to be shown in goal output.

  \item @{attribute show_main_goal} controls whether the main result
  to be proven should be displayed.  This information might be
  relevant for schematic goals, to inspect the current claim that has
  been synthesized so far.

  \item @{attribute show_hyps} controls printing of implicit
  hypotheses of local facts.  Normally, only those hypotheses are
  displayed that are \emph{not} covered by the assumptions of the
  current context: this situation indicates a fault in some tool being

  By enabling @{attribute show_hyps}, output of \emph{all} hypotheses
  can be enforced, which is occasionally useful for diagnostic

  \item @{attribute show_tags} controls printing of extra annotations
  within theorems, such as internal position information, or the case
  names being attached by the attribute @{attribute case_names}.

  Note that the @{attribute tagged} and @{attribute untagged}
  attributes provide low-level access to the collection of tags
  associated with a theorem.

  \item @{attribute show_question_marks} controls printing of question
  marks for schematic variables, such as @{text ?x}.  Only the leading
  question mark is affected, the remaining text is unchanged
  (including proper markup for schematic variables that might be
  relevant for user interfaces).


subsection {* Alternative print modes \label{sec:print-modes} *}

text {*
    @{index_ML print_mode_value: "unit -> string list"} \\
    @{index_ML Print_Mode.with_modes: "string list -> ('a -> 'b) -> 'a -> 'b"} \\

  The \emph{print mode} facility allows to modify various operations
  for printing.  Commands like @{command typ}, @{command term},
  @{command thm} (see \secref{sec:print-diag}) take additional print
  modes as optional argument.  The underlying ML operations are as


  \item @{ML "print_mode_value ()"} yields the list of currently
  active print mode names.  This should be understood as symbolic
  representation of certain individual features for printing (with
  precedence from left to right).

  \item @{ML Print_Mode.with_modes}~@{text "modes f x"} evaluates
  @{text "f x"} in an execution context where the print mode is
  prepended by the given @{text "modes"}.  This provides a thread-safe
  way to augment print modes.  It is also monotonic in the set of mode
  names: it retains the default print mode that certain
  user-interfaces might have installed for their proper functioning!


  The old global reference @{ML print_mode} should never be used
  directly in applications.  Its main reason for being publicly
  accessible is to support historic versions of Proof~General.

  \medskip The pretty printer for inner syntax maintains alternative
  mixfix productions for any print mode name invented by the user, say
  in commands like @{command notation} or @{command abbreviation}.
  Mode names can be arbitrary, but the following ones have a specific
  meaning by convention:


  \item @{verbatim "\"\""} (the empty string): default mode;
  implicitly active as last element in the list of modes.

  \item @{verbatim input}: dummy print mode that is never active; may
  be used to specify notation that is only available for input.

  \item @{verbatim internal} dummy print mode that is never active;
  used internally in Isabelle/Pure.

  \item @{verbatim xsymbols}: enable proper mathematical symbols
  instead of ASCII art.\footnote{This traditional mode name stems from
  the ``X-Symbol'' package for old versions Proof~General with XEmacs,
  although that package has been superseded by Unicode in recent

  \item @{verbatim HTML}: additional mode that is active in HTML
  presentation of Isabelle theory sources; allows to provide
  alternative output notation.

  \item @{verbatim latex}: additional mode that is active in {\LaTeX}
  document preparation of Isabelle theory sources; allows to provide
  alternative output notation.


subsection {* Printing limits *}

text {*
    @{index_ML Pretty.margin_default: "int Unsynchronized.ref"} \\
    @{index_ML print_depth: "int -> unit"} \\

  These ML functions set limits for pretty printed text.


  \item @{ML Pretty.margin_default} indicates the global default for
  the right margin of the built-in pretty printer, with initial value
  76.  Note that user-interfaces typically control margins
  automatically when resizing windows, or even bypass the formatting
  engine of Isabelle/ML altogether and do it within the front end via

  \item @{ML print_depth}~@{text n} limits the printing depth of the
  ML toplevel pretty printer; the precise effect depends on the ML
  compiler and run-time system.  Typically @{text n} should be less
  than 10.  Bigger values such as 100--1000 are useful for debugging.


section {* Mixfix annotations \label{sec:mixfix} *}

text {* Mixfix annotations specify concrete \emph{inner syntax} of
  Isabelle types and terms.  Locally fixed parameters in toplevel
  theorem statements, locale specifications etc.\ also admit mixfix

  @{rail "
    @{syntax_def mixfix}: '(' (
      @{syntax string} prios? @{syntax nat}? |
      (@'infix' | @'infixl' | @'infixr') @{syntax string} @{syntax nat} |
      @'binder' @{syntax string} prios? @{syntax nat} ) ')'
    @{syntax_def struct_mixfix}: @{syntax mixfix} | '(' @'structure' ')'

    prios: '[' (@{syntax nat} + ',') ']'

  Here the @{syntax string} specifications refer to the actual mixfix
  template, which may include literal text, spacing, blocks, and
  arguments (denoted by ``@{text _}''); the special symbol
  ``@{verbatim "\<index>"}'' (printed as ``@{text "\<index>"}'') represents an index
  argument that specifies an implicit structure reference (see also
  \secref{sec:locale}).  Infix and binder declarations provide common
  abbreviations for particular mixfix declarations.  So in practice,
  mixfix templates mostly degenerate to literal text for concrete
  syntax, such as ``@{verbatim "++"}'' for an infix symbol.

  \medskip In full generality, mixfix declarations work as follows.
  Suppose a constant @{text "c :: \<tau>\<^sub>1 \<Rightarrow> \<dots> \<tau>\<^sub>n \<Rightarrow> \<tau>"} is
  annotated by @{text "(mixfix [p\<^sub>1, \<dots>, p\<^sub>n] p)"}, where @{text
  "mixfix"} is a string @{text "d\<^sub>0 _ d\<^sub>1 _ \<dots> _ d\<^sub>n"} consisting of
  delimiters that surround argument positions as indicated by

  Altogether this determines a production for a context-free priority
  grammar, where for each argument @{text "i"} the syntactic category
  is determined by @{text "\<tau>\<^sub>i"} (with priority @{text "p\<^sub>i"}), and
  the result category is determined from @{text "\<tau>"} (with
  priority @{text "p"}).  Priority specifications are optional, with
  default 0 for arguments and 1000 for the result.

  Since @{text "\<tau>"} may be again a function type, the constant
  type scheme may have more argument positions than the mixfix
  pattern.  Printing a nested application @{text "c t\<^sub>1 \<dots> t\<^sub>m"} for
  @{text "m > n"} works by attaching concrete notation only to the
  innermost part, essentially by printing @{text "(c t\<^sub>1 \<dots> t\<^sub>n) \<dots> t\<^sub>m"}
  instead.  If a term has fewer arguments than specified in the mixfix
  template, the concrete syntax is ignored.

  \medskip A mixfix template may also contain additional directives
  for pretty printing, notably spaces, blocks, and breaks.  The
  general template format is a sequence over any of the following


  \item @{text "d"} is a delimiter, namely a non-empty sequence of
  characters other than the following special characters:

    @{verbatim "'"} & single quote \\
    @{verbatim "_"} & underscore \\
    @{text "\<index>"} & index symbol \\
    @{verbatim "("} & open parenthesis \\
    @{verbatim ")"} & close parenthesis \\
    @{verbatim "/"} & slash \\

  \item @{verbatim "'"} escapes the special meaning of these
  meta-characters, producing a literal version of the following
  character, unless that is a blank.

  A single quote followed by a blank separates delimiters, without
  affecting printing, but input tokens may have additional white space

  \item @{verbatim "_"} is an argument position, which stands for a
  certain syntactic category in the underlying grammar.

  \item @{text "\<index>"} is an indexed argument position; this is the place
  where implicit structure arguments can be attached.

  \item @{text "s"} is a non-empty sequence of spaces for printing.
  This and the following specifications do not affect parsing at all.

  \item @{verbatim "("}@{text n} opens a pretty printing block.  The
  optional number specifies how much indentation to add when a line
  break occurs within the block.  If the parenthesis is not followed
  by digits, the indentation defaults to 0.  A block specified via
  @{verbatim "(00"} is unbreakable.

  \item @{verbatim ")"} closes a pretty printing block.

  \item @{verbatim "//"} forces a line break.

  \item @{verbatim "/"}@{text s} allows a line break.  Here @{text s}
  stands for the string of spaces (zero or more) right after the
  slash.  These spaces are printed if the break is \emph{not} taken.


  For example, the template @{verbatim "(_ +/ _)"} specifies an infix
  operator.  There are two argument positions; the delimiter
  @{verbatim "+"} is preceded by a space and followed by a space or
  line break; the entire phrase is a pretty printing block.

  The general idea of pretty printing with blocks and breaks is also
  described in \cite{paulson-ml2}; it goes back to \cite{Oppen:1980}.

section {* Explicit notation \label{sec:notation} *}

text {*
    @{command_def "type_notation"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
    @{command_def "no_type_notation"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
    @{command_def "notation"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
    @{command_def "no_notation"} & : & @{text "local_theory \<rightarrow> local_theory"} \\
    @{command_def "write"} & : & @{text "proof(state) \<rightarrow> proof(state)"} \\

  Commands that introduce new logical entities (terms or types)
  usually allow to provide mixfix annotations on the spot, which is
  convenient for default notation.  Nonetheless, the syntax may be
  modified later on by declarations for explicit notation.  This
  allows to add or delete mixfix annotations for of existing logical
  entities within the current context.

  @{rail "
    (@@{command type_notation} | @@{command no_type_notation}) @{syntax target}?
      @{syntax mode}? \\ (@{syntax nameref} @{syntax mixfix} + @'and')
    (@@{command notation} | @@{command no_notation}) @{syntax target}? @{syntax mode}? \\
      (@{syntax nameref} @{syntax struct_mixfix} + @'and')
    @@{command write} @{syntax mode}? (@{syntax nameref} @{syntax struct_mixfix} + @'and')


  \item @{command "type_notation"}~@{text "c (mx)"} associates mixfix
  syntax with an existing type constructor.  The arity of the
  constructor is retrieved from the context.

  \item @{command "no_type_notation"} is similar to @{command
  "type_notation"}, but removes the specified syntax annotation from
  the present context.

  \item @{command "notation"}~@{text "c (mx)"} associates mixfix
  syntax with an existing constant or fixed variable.  The type
  declaration of the given entity is retrieved from the context.

  \item @{command "no_notation"} is similar to @{command "notation"},
  but removes the specified syntax annotation from the present

  \item @{command "write"} is similar to @{command "notation"}, but
  works within an Isar proof body.


  Note that the more primitive commands @{command "syntax"} and
  @{command "no_syntax"} (\secref{sec:syn-trans}) provide raw access
  to the syntax tables of a global theory.

section {* The Pure syntax \label{sec:pure-syntax} *}

subsection {* Lexical matters \label{sec:inner-lex} *}

text {* The inner lexical syntax vaguely resembles the outer one
  (\secref{sec:outer-lex}), but some details are different.  There are
  two main categories of inner syntax tokens:


  \item \emph{delimiters} --- the literal tokens occurring in
  productions of the given priority grammar (cf.\

  \item \emph{named tokens} --- various categories of identifiers etc.


  Delimiters override named tokens and may thus render certain
  identifiers inaccessible.  Sometimes the logical context admits
  alternative ways to refer to the same entity, potentially via
  qualified names.

  \medskip The categories for named tokens are defined once and for
  all as follows, reusing some categories of the outer token syntax

    @{syntax_def (inner) id} & = & @{syntax_ref ident} \\
    @{syntax_def (inner) longid} & = & @{syntax_ref longident} \\
    @{syntax_def (inner) var} & = & @{syntax_ref var} \\
    @{syntax_def (inner) tid} & = & @{syntax_ref typefree} \\
    @{syntax_def (inner) tvar} & = & @{syntax_ref typevar} \\
    @{syntax_def (inner) num_token} & = & @{syntax_ref nat}@{text "  |  "}@{verbatim "-"}@{syntax_ref nat} \\
    @{syntax_def (inner) float_token} & = & @{syntax_ref nat}@{verbatim "."}@{syntax_ref nat}@{text "  |  "}@{verbatim "-"}@{syntax_ref nat}@{verbatim "."}@{syntax_ref nat} \\
    @{syntax_def (inner) xnum_token} & = & @{verbatim "#"}@{syntax_ref nat}@{text "  |  "}@{verbatim "#-"}@{syntax_ref nat} \\

    @{syntax_def (inner) xstr} & = & @{verbatim "''"} @{text "\<dots>"} @{verbatim "''"} \\

  The token categories @{syntax (inner) num_token}, @{syntax (inner)
  float_token}, @{syntax (inner) xnum_token}, and @{syntax (inner)
  xstr} are not used in Pure.  Object-logics may implement numerals
  and string constants by adding appropriate syntax declarations,
  together with some translation functions (e.g.\ see Isabelle/HOL).

  The derived categories @{syntax_def (inner) num_const}, @{syntax_def
  (inner) float_const}, and @{syntax_def (inner) num_const} provide
  robust access to the respective tokens: the syntax tree holds a
  syntactic constant instead of a free variable.

subsection {* Priority grammars \label{sec:priority-grammar} *}

text {* A context-free grammar consists of a set of \emph{terminal
  symbols}, a set of \emph{nonterminal symbols} and a set of
  \emph{productions}.  Productions have the form @{text "A = \<gamma>"},
  where @{text A} is a nonterminal and @{text \<gamma>} is a string of
  terminals and nonterminals.  One designated nonterminal is called
  the \emph{root symbol}.  The language defined by the grammar
  consists of all strings of terminals that can be derived from the
  root symbol by applying productions as rewrite rules.

  The standard Isabelle parser for inner syntax uses a \emph{priority
  grammar}.  Each nonterminal is decorated by an integer priority:
  @{text "A\<^sup>(\<^sup>p\<^sup>)"}.  In a derivation, @{text "A\<^sup>(\<^sup>p\<^sup>)"} may be rewritten
  using a production @{text "A\<^sup>(\<^sup>q\<^sup>) = \<gamma>"} only if @{text "p \<le> q"}.  Any
  priority grammar can be translated into a normal context-free
  grammar by introducing new nonterminals and productions.

  \medskip Formally, a set of context free productions @{text G}
  induces a derivation relation @{text "\<longrightarrow>\<^sub>G"} as follows.  Let @{text
  \<alpha>} and @{text \<beta>} denote strings of terminal or nonterminal symbols.
  Then @{text "\<alpha> A\<^sup>(\<^sup>p\<^sup>) \<beta> \<longrightarrow>\<^sub>G \<alpha> \<gamma> \<beta>"} holds if and only if @{text G}
  contains some production @{text "A\<^sup>(\<^sup>q\<^sup>) = \<gamma>"} for @{text "p \<le> q"}.

  \medskip The following grammar for arithmetic expressions
  demonstrates how binding power and associativity of operators can be
  enforced by priorities.

  @{text "A\<^sup>(\<^sup>1\<^sup>0\<^sup>0\<^sup>0\<^sup>)"} & @{text "="} & @{verbatim "("} @{text "A\<^sup>(\<^sup>0\<^sup>)"} @{verbatim ")"} \\
  @{text "A\<^sup>(\<^sup>1\<^sup>0\<^sup>0\<^sup>0\<^sup>)"} & @{text "="} & @{verbatim 0} \\
  @{text "A\<^sup>(\<^sup>0\<^sup>)"} & @{text "="} & @{text "A\<^sup>(\<^sup>0\<^sup>)"} @{verbatim "+"} @{text "A\<^sup>(\<^sup>1\<^sup>)"} \\
  @{text "A\<^sup>(\<^sup>2\<^sup>)"} & @{text "="} & @{text "A\<^sup>(\<^sup>3\<^sup>)"} @{verbatim "*"} @{text "A\<^sup>(\<^sup>2\<^sup>)"} \\
  @{text "A\<^sup>(\<^sup>3\<^sup>)"} & @{text "="} & @{verbatim "-"} @{text "A\<^sup>(\<^sup>3\<^sup>)"} \\
  The choice of priorities determines that @{verbatim "-"} binds
  tighter than @{verbatim "*"}, which binds tighter than @{verbatim
  "+"}.  Furthermore @{verbatim "+"} associates to the left and
  @{verbatim "*"} to the right.

  \medskip For clarity, grammars obey these conventions:

  \item All priorities must lie between 0 and 1000.

  \item Priority 0 on the right-hand side and priority 1000 on the
  left-hand side may be omitted.

  \item The production @{text "A\<^sup>(\<^sup>p\<^sup>) = \<alpha>"} is written as @{text "A = \<alpha>
  (p)"}, i.e.\ the priority of the left-hand side actually appears in
  a column on the far right.

  \item Alternatives are separated by @{text "|"}.

  \item Repetition is indicated by dots @{text "(\<dots>)"} in an informal
  but obvious way.


  Using these conventions, the example grammar specification above
  takes the form:
    @{text A} & @{text "="} & @{verbatim "("} @{text A} @{verbatim ")"} \\
              & @{text "|"} & @{verbatim 0} & \qquad\qquad \\
              & @{text "|"} & @{text A} @{verbatim "+"} @{text "A\<^sup>(\<^sup>1\<^sup>)"} & @{text "(0)"} \\
              & @{text "|"} & @{text "A\<^sup>(\<^sup>3\<^sup>)"} @{verbatim "*"} @{text "A\<^sup>(\<^sup>2\<^sup>)"} & @{text "(2)"} \\
              & @{text "|"} & @{verbatim "-"} @{text "A\<^sup>(\<^sup>3\<^sup>)"} & @{text "(3)"} \\

subsection {* The Pure grammar *}

text {* The priority grammar of the @{text "Pure"} theory is defined
  approximately like this:


  @{syntax_def (inner) any} & = & @{text "prop  |  logic"} \\\\

  @{syntax_def (inner) prop} & = & @{verbatim "("} @{text prop} @{verbatim ")"} \\
    & @{text "|"} & @{text "prop\<^sup>(\<^sup>4\<^sup>)"} @{verbatim "::"} @{text type} & @{text "(3)"} \\
    & @{text "|"} & @{text "any\<^sup>(\<^sup>3\<^sup>)"} @{verbatim "=="} @{text "any\<^sup>(\<^sup>2\<^sup>)"} & @{text "(2)"} \\
    & @{text "|"} & @{text "any\<^sup>(\<^sup>3\<^sup>)"} @{text "\<equiv>"} @{text "any\<^sup>(\<^sup>2\<^sup>)"} & @{text "(2)"} \\
    & @{text "|"} & @{text "prop\<^sup>(\<^sup>3\<^sup>)"} @{verbatim "&&&"} @{text "prop\<^sup>(\<^sup>2\<^sup>)"} & @{text "(2)"} \\
    & @{text "|"} & @{text "prop\<^sup>(\<^sup>2\<^sup>)"} @{verbatim "==>"} @{text "prop\<^sup>(\<^sup>1\<^sup>)"} & @{text "(1)"} \\
    & @{text "|"} & @{text "prop\<^sup>(\<^sup>2\<^sup>)"} @{text "\<Longrightarrow>"} @{text "prop\<^sup>(\<^sup>1\<^sup>)"} & @{text "(1)"} \\
    & @{text "|"} & @{verbatim "[|"} @{text prop} @{verbatim ";"} @{text "\<dots>"} @{verbatim ";"} @{text prop} @{verbatim "|]"} @{verbatim "==>"} @{text "prop\<^sup>(\<^sup>1\<^sup>)"} & @{text "(1)"} \\
    & @{text "|"} & @{text "\<lbrakk>"} @{text prop} @{verbatim ";"} @{text "\<dots>"} @{verbatim ";"} @{text prop} @{text "\<rbrakk>"} @{text "\<Longrightarrow>"} @{text "prop\<^sup>(\<^sup>1\<^sup>)"} & @{text "(1)"} \\
    & @{text "|"} & @{verbatim "!!"} @{text idts} @{verbatim "."} @{text prop} & @{text "(0)"} \\
    & @{text "|"} & @{text "\<And>"} @{text idts} @{verbatim "."} @{text prop} & @{text "(0)"} \\
    & @{text "|"} & @{verbatim OFCLASS} @{verbatim "("} @{text type} @{verbatim ","} @{text logic} @{verbatim ")"} \\
    & @{text "|"} & @{verbatim SORT_CONSTRAINT} @{verbatim "("} @{text type} @{verbatim ")"} \\
    & @{text "|"} & @{verbatim TERM} @{text logic} \\
    & @{text "|"} & @{verbatim PROP} @{text aprop} \\\\

  @{syntax_def (inner) aprop} & = & @{verbatim "("} @{text aprop} @{verbatim ")"} \\
    & @{text "|"} & @{text "id  |  longid  |  var  |  "}@{verbatim "_"}@{text "  |  "}@{verbatim "..."} \\
    & @{text "|"} & @{verbatim CONST} @{text "id  |  "}@{verbatim CONST} @{text "longid"} \\
    & @{text "|"} & @{verbatim XCONST} @{text "id  |  "}@{verbatim XCONST} @{text "longid"} \\
    & @{text "|"} & @{text "logic\<^sup>(\<^sup>1\<^sup>0\<^sup>0\<^sup>0\<^sup>)  any\<^sup>(\<^sup>1\<^sup>0\<^sup>0\<^sup>0\<^sup>) \<dots> any\<^sup>(\<^sup>1\<^sup>0\<^sup>0\<^sup>0\<^sup>)"} & @{text "(999)"} \\\\

  @{syntax_def (inner) logic} & = & @{verbatim "("} @{text logic} @{verbatim ")"} \\
    & @{text "|"} & @{text "logic\<^sup>(\<^sup>4\<^sup>)"} @{verbatim "::"} @{text type} & @{text "(3)"} \\
    & @{text "|"} & @{text "id  |  longid  |  var  |  "}@{verbatim "_"}@{text "  |  "}@{verbatim "..."} \\
    & @{text "|"} & @{verbatim CONST} @{text "id  |  "}@{verbatim CONST} @{text "longid"} \\
    & @{text "|"} & @{verbatim XCONST} @{text "id  |  "}@{verbatim XCONST} @{text "longid"} \\
    & @{text "|"} & @{text "logic\<^sup>(\<^sup>1\<^sup>0\<^sup>0\<^sup>0\<^sup>)  any\<^sup>(\<^sup>1\<^sup>0\<^sup>0\<^sup>0\<^sup>) \<dots> any\<^sup>(\<^sup>1\<^sup>0\<^sup>0\<^sup>0\<^sup>)"} & @{text "(999)"} \\
    & @{text "|"} & @{text "\<struct> index\<^sup>(\<^sup>1\<^sup>0\<^sup>0\<^sup>0\<^sup>)"} \\
    & @{text "|"} & @{verbatim "%"} @{text pttrns} @{verbatim "."} @{text "any\<^sup>(\<^sup>3\<^sup>)"} & @{text "(3)"} \\
    & @{text "|"} & @{text \<lambda>} @{text pttrns} @{verbatim "."} @{text "any\<^sup>(\<^sup>3\<^sup>)"} & @{text "(3)"} \\
    & @{text "|"} & @{verbatim op} @{verbatim "=="}@{text "  |  "}@{verbatim op} @{text "\<equiv>"}@{text "  |  "}@{verbatim op} @{verbatim "&&&"} \\
    & @{text "|"} & @{verbatim op} @{verbatim "==>"}@{text "  |  "}@{verbatim op} @{text "\<Longrightarrow>"} \\
    & @{text "|"} & @{verbatim TYPE} @{verbatim "("} @{text type} @{verbatim ")"} \\\\

  @{syntax_def (inner) idt} & = & @{verbatim "("} @{text idt} @{verbatim ")"}@{text "  |  id  |  "}@{verbatim "_"} \\
    & @{text "|"} & @{text id} @{verbatim "::"} @{text type} & @{text "(0)"} \\
    & @{text "|"} & @{verbatim "_"} @{verbatim "::"} @{text type} & @{text "(0)"} \\\\

  @{syntax_def (inner) index} & = & @{verbatim "\<^bsub>"} @{text "logic\<^sup>(\<^sup>0\<^sup>)"} @{verbatim "\<^esub>"}@{text "  |  |  \<index>"} \\\\

  @{syntax_def (inner) idts} & = & @{text "idt  |  idt\<^sup>(\<^sup>1\<^sup>) idts"} & @{text "(0)"} \\\\

  @{syntax_def (inner) pttrn} & = & @{text idt} \\\\

  @{syntax_def (inner) pttrns} & = & @{text "pttrn  |  pttrn\<^sup>(\<^sup>1\<^sup>) pttrns"} & @{text "(0)"} \\\\

  @{syntax_def (inner) type} & = & @{verbatim "("} @{text type} @{verbatim ")"} \\
    & @{text "|"} & @{text "tid  |  tvar  |  "}@{verbatim "_"} \\
    & @{text "|"} & @{text "tid"} @{verbatim "::"} @{text "sort  |  tvar  "}@{verbatim "::"} @{text "sort  |  "}@{verbatim "_"} @{verbatim "::"} @{text "sort"} \\
    & @{text "|"} & @{text "type_name  |  type\<^sup>(\<^sup>1\<^sup>0\<^sup>0\<^sup>0\<^sup>) type_name"} \\
    & @{text "|"} & @{verbatim "("} @{text type} @{verbatim ","} @{text "\<dots>"} @{verbatim ","} @{text type} @{verbatim ")"} @{text type_name} \\
    & @{text "|"} & @{text "type\<^sup>(\<^sup>1\<^sup>)"} @{verbatim "=>"} @{text type} & @{text "(0)"} \\
    & @{text "|"} & @{text "type\<^sup>(\<^sup>1\<^sup>)"} @{text "\<Rightarrow>"} @{text type} & @{text "(0)"} \\
    & @{text "|"} & @{verbatim "["} @{text type} @{verbatim ","} @{text "\<dots>"} @{verbatim ","} @{text type} @{verbatim "]"} @{verbatim "=>"} @{text type} & @{text "(0)"} \\
    & @{text "|"} & @{verbatim "["} @{text type} @{verbatim ","} @{text "\<dots>"} @{verbatim ","} @{text type} @{verbatim "]"} @{text "\<Rightarrow>"} @{text type} & @{text "(0)"} \\
  @{syntax_def (inner) type_name} & = & @{text "id  |  longid"} \\\\

  @{syntax_def (inner) sort} & = & @{syntax class_name}~@{text "  |  "}@{verbatim "{}"} \\
    & @{text "|"} & @{verbatim "{"} @{syntax class_name} @{verbatim ","} @{text "\<dots>"} @{verbatim ","} @{syntax class_name} @{verbatim "}"} \\
  @{syntax_def (inner) class_name} & = & @{text "id  |  longid"} \\

  \medskip Here literal terminals are printed @{verbatim "verbatim"};
  see also \secref{sec:inner-lex} for further token categories of the
  inner syntax.  The meaning of the nonterminals defined by the above
  grammar is as follows:


  \item @{syntax_ref (inner) any} denotes any term.

  \item @{syntax_ref (inner) prop} denotes meta-level propositions,
  which are terms of type @{typ prop}.  The syntax of such formulae of
  the meta-logic is carefully distinguished from usual conventions for
  object-logics.  In particular, plain @{text "\<lambda>"}-term notation is
  \emph{not} recognized as @{syntax (inner) prop}.

  \item @{syntax_ref (inner) aprop} denotes atomic propositions, which
  are embedded into regular @{syntax (inner) prop} by means of an
  explicit @{verbatim PROP} token.

  Terms of type @{typ prop} with non-constant head, e.g.\ a plain
  variable, are printed in this form.  Constants that yield type @{typ
  prop} are expected to provide their own concrete syntax; otherwise
  the printed version will appear like @{syntax (inner) logic} and
  cannot be parsed again as @{syntax (inner) prop}.

  \item @{syntax_ref (inner) logic} denotes arbitrary terms of a
  logical type, excluding type @{typ prop}.  This is the main
  syntactic category of object-logic entities, covering plain @{text
  \<lambda>}-term notation (variables, abstraction, application), plus
  anything defined by the user.

  When specifying notation for logical entities, all logical types
  (excluding @{typ prop}) are \emph{collapsed} to this single category
  of @{syntax (inner) logic}.

  \item @{syntax_ref (inner) index} denotes an optional index term for
  indexed syntax.  If omitted, it refers to the first @{keyword
  "structure"} variable in the context.  The special dummy ``@{text
  "\<index>"}'' serves as pattern variable in mixfix annotations that
  introduce indexed notation.

  \item @{syntax_ref (inner) idt} denotes identifiers, possibly
  constrained by types.

  \item @{syntax_ref (inner) idts} denotes a sequence of @{syntax_ref
  (inner) idt}.  This is the most basic category for variables in
  iterated binders, such as @{text "\<lambda>"} or @{text "\<And>"}.

  \item @{syntax_ref (inner) pttrn} and @{syntax_ref (inner) pttrns}
  denote patterns for abstraction, cases bindings etc.  In Pure, these
  categories start as a merely copy of @{syntax (inner) idt} and
  @{syntax (inner) idts}, respectively.  Object-logics may add
  additional productions for binding forms.

  \item @{syntax_ref (inner) type} denotes types of the meta-logic.

  \item @{syntax_ref (inner) sort} denotes meta-level sorts.


  Here are some further explanations of certain syntax features.


  \item In @{syntax (inner) idts}, note that @{text "x :: nat y"} is
  parsed as @{text "x :: (nat y)"}, treating @{text y} like a type
  constructor applied to @{text nat}.  To avoid this interpretation,
  write @{text "(x :: nat) y"} with explicit parentheses.

  \item Similarly, @{text "x :: nat y :: nat"} is parsed as @{text "x ::
  (nat y :: nat)"}.  The correct form is @{text "(x :: nat) (y ::
  nat)"}, or @{text "(x :: nat) y :: nat"} if @{text y} is last in the
  sequence of identifiers.

  \item Type constraints for terms bind very weakly.  For example,
  @{text "x < y :: nat"} is normally parsed as @{text "(x < y) ::
  nat"}, unless @{text "<"} has a very low priority, in which case the
  input is likely to be ambiguous.  The correct form is @{text "x < (y
  :: nat)"}.

  \item Constraints may be either written with two literal colons
  ``@{verbatim "::"}'' or the double-colon symbol @{verbatim "\<Colon>"},
  which actually looks exactly the same in some {\LaTeX} styles.

  \item Dummy variables (written as underscore) may occur in different


  \item A type ``@{text "_"}'' or ``@{text "_ :: sort"}'' acts like an
  anonymous inference parameter, which is filled-in according to the
  most general type produced by the type-checking phase.

  \item A bound ``@{text "_"}'' refers to a vacuous abstraction, where
  the body does not refer to the binding introduced here.  As in the
  term @{term "\<lambda>x _. x"}, which is @{text "\<alpha>"}-equivalent to @{text
  "\<lambda>x y. x"}.

  \item A free ``@{text "_"}'' refers to an implicit outer binding.
  Higher definitional packages usually allow forms like @{text "f x _
  = x"}.

  \item A schematic ``@{text "_"}'' (within a term pattern, see
  \secref{sec:term-decls}) refers to an anonymous variable that is
  implicitly abstracted over its context of locally bound variables.
  For example, this allows pattern matching of @{text "{x. f x = g
  x}"} against @{text "{x. _ = _}"}, or even @{text "{_. _ = _}"} by
  using both bound and schematic dummies.


  \item The three literal dots ``@{verbatim "..."}'' may be also
  written as ellipsis symbol @{verbatim "\<dots>"}.  In both cases this
  refers to a special schematic variable, which is bound in the
  context.  This special term abbreviation works nicely with
  calculational reasoning (\secref{sec:calculation}).

  \item @{verbatim CONST} ensures that the given identifier is treated
  as constant term, and passed through the parse tree in fully
  internalized form.  This is particularly relevant for translation
  rules (\secref{sec:syn-trans}), notably on the RHS.

  \item @{verbatim XCONST} is similar to @{verbatim CONST}, but
  retains the constant name as given.  This is only relevant to
  translation rules (\secref{sec:syn-trans}), notably on the LHS.


subsection {* Inspecting the syntax *}

text {*
    @{command_def "print_syntax"}@{text "\<^sup>*"} & : & @{text "context \<rightarrow>"} \\


  \item @{command "print_syntax"} prints the inner syntax of the
  current context.  The output can be quite large; the most important
  sections are explained below.


  \item @{text "lexicon"} lists the delimiters of the inner token
  language; see \secref{sec:inner-lex}.

  \item @{text "prods"} lists the productions of the underlying
  priority grammar; see \secref{sec:priority-grammar}.

  The nonterminal @{text "A\<^sup>(\<^sup>p\<^sup>)"} is rendered in plain text as @{text
  "A[p]"}; delimiters are quoted.  Many productions have an extra
  @{text "\<dots> => name"}.  These names later become the heads of parse
  trees; they also guide the pretty printer.

  Productions without such parse tree names are called \emph{copy
  productions}.  Their right-hand side must have exactly one
  nonterminal symbol (or named token).  The parser does not create a
  new parse tree node for copy productions, but simply returns the
  parse tree of the right-hand symbol.

  If the right-hand side of a copy production consists of a single
  nonterminal without any delimiters, then it is called a \emph{chain
  production}.  Chain productions act as abbreviations: conceptually,
  they are removed from the grammar by adding new productions.
  Priority information attached to chain productions is ignored; only
  the dummy value @{text "-1"} is displayed.

  \item @{text "print modes"} lists the alternative print modes
  provided by this grammar; see \secref{sec:print-modes}.

  \item @{text "parse_rules"} and @{text "print_rules"} relate to
  syntax translations (macros); see \secref{sec:syn-trans}.

  \item @{text "parse_ast_translation"} and @{text
  "print_ast_translation"} list sets of constants that invoke
  translation functions for abstract syntax trees, which are only
  required in very special situations; see \secref{sec:tr-funs}.

  \item @{text "parse_translation"} and @{text "print_translation"}
  list the sets of constants that invoke regular translation
  functions; see \secref{sec:tr-funs}.



section {* Raw syntax and translations \label{sec:syn-trans} *}

text {*
    @{command_def "nonterminal"} & : & @{text "theory \<rightarrow> theory"} \\
    @{command_def "syntax"} & : & @{text "theory \<rightarrow> theory"} \\
    @{command_def "no_syntax"} & : & @{text "theory \<rightarrow> theory"} \\
    @{command_def "translations"} & : & @{text "theory \<rightarrow> theory"} \\
    @{command_def "no_translations"} & : & @{text "theory \<rightarrow> theory"} \\

  @{rail "
    @@{command nonterminal} (@{syntax name} + @'and')
    (@@{command syntax} | @@{command no_syntax}) @{syntax mode}? (@{syntax constdecl} +)
    (@@{command translations} | @@{command no_translations})
      (transpat ('==' | '=>' | '<=' | '\<rightleftharpoons>' | '\<rightharpoonup>' | '\<leftharpoondown>') transpat +)

    mode: ('(' ( @{syntax name} | @'output' | @{syntax name} @'output' ) ')')
    transpat: ('(' @{syntax nameref} ')')? @{syntax string}


  \item @{command "nonterminal"}~@{text c} declares a type
  constructor @{text c} (without arguments) to act as purely syntactic
  type: a nonterminal symbol of the inner syntax.

  \item @{command "syntax"}~@{text "(mode) decls"} is similar to
  @{command "consts"}~@{text decls}, except that the actual logical
  signature extension is omitted.  Thus the context free grammar of
  Isabelle's inner syntax may be augmented in arbitrary ways,
  independently of the logic.  The @{text mode} argument refers to the
  print mode that the grammar rules belong; unless the @{keyword_ref
  "output"} indicator is given, all productions are added both to the
  input and output grammar.

  \item @{command "no_syntax"}~@{text "(mode) decls"} removes grammar
  declarations (and translations) resulting from @{text decls}, which
  are interpreted in the same manner as for @{command "syntax"} above.

  \item @{command "translations"}~@{text rules} specifies syntactic
  translation rules (i.e.\ macros): parse~/ print rules (@{text "\<rightleftharpoons>"}),
  parse rules (@{text "\<rightharpoonup>"}), or print rules (@{text "\<leftharpoondown>"}).
  Translation patterns may be prefixed by the syntactic category to be
  used for parsing; the default is @{text logic}.

  \item @{command "no_translations"}~@{text rules} removes syntactic
  translation rules, which are interpreted in the same manner as for
  @{command "translations"} above.


section {* Syntax translation functions \label{sec:tr-funs} *}

text {*
    @{command_def "parse_ast_translation"} & : & @{text "theory \<rightarrow> theory"} \\
    @{command_def "parse_translation"} & : & @{text "theory \<rightarrow> theory"} \\
    @{command_def "print_translation"} & : & @{text "theory \<rightarrow> theory"} \\
    @{command_def "typed_print_translation"} & : & @{text "theory \<rightarrow> theory"} \\
    @{command_def "print_ast_translation"} & : & @{text "theory \<rightarrow> theory"} \\

  @{rail "
  ( @@{command parse_ast_translation} | @@{command parse_translation} |
    @@{command print_translation} | @@{command typed_print_translation} |
    @@{command print_ast_translation}) ('(' @'advanced' ')')? @{syntax text}

  Syntax translation functions written in ML admit almost arbitrary
  manipulations of Isabelle's inner syntax.  Any of the above commands
  have a single @{syntax text} argument that refers to an ML
  expression of appropriate type, which are as follows by default:

%FIXME proper antiquotations
val parse_ast_translation   : (string * (ast list -> ast)) list
val parse_translation       : (string * (term list -> term)) list
val print_translation       : (string * (term list -> term)) list
val typed_print_translation : (string * (typ -> term list -> term)) list
val print_ast_translation   : (string * (ast list -> ast)) list

  If the @{text "(advanced)"} option is given, the corresponding
  translation functions may depend on the current theory or proof
  context.  This allows to implement advanced syntax mechanisms, as
  translations functions may refer to specific theory declarations or
  auxiliary proof data.

  See also \cite{isabelle-ref} for more information on the general
  concept of syntax transformations in Isabelle.

%FIXME proper antiquotations
val parse_ast_translation:
  (string * (Proof.context -> ast list -> ast)) list
val parse_translation:
  (string * (Proof.context -> term list -> term)) list
val print_translation:
  (string * (Proof.context -> term list -> term)) list
val typed_print_translation:
  (string * (Proof.context -> typ -> term list -> term)) list
val print_ast_translation:
  (string * (Proof.context -> ast list -> ast)) list