author | wenzelm |
Sat, 27 Feb 2021 16:33:16 +0100 | |
changeset 73313 | 8ae2f8ebc373 |
parent 69593 | 3dda49e08b9d |
child 74282 | c2ee8d993d6a |
permissions | -rw-r--r-- |
(* Title: Tools/nbe.ML Authors: Klaus Aehlig, LMU Muenchen; Tobias Nipkow, Florian Haftmann, TU Muenchen Normalization by evaluation, based on generic code generator. *) signature NBE = sig val dynamic_conv: Proof.context -> conv val dynamic_value: Proof.context -> term -> term val static_conv: { ctxt: Proof.context, consts: string list } -> Proof.context -> conv val static_value: { ctxt: Proof.context, consts: string list } -> Proof.context -> term -> term datatype Univ = Const of int * Univ list (*named (uninterpreted) constants*) | DFree of string * int (*free (uninterpreted) dictionary parameters*) | BVar of int * Univ list | Abs of (int * (Univ list -> Univ)) * Univ list val apps: Univ -> Univ list -> Univ (*explicit applications*) val abss: int -> (Univ list -> Univ) -> Univ (*abstractions as closures*) val same: Univ * Univ -> bool val put_result: (unit -> Univ list -> Univ list) -> Proof.context -> Proof.context val trace: bool Config.T val add_const_alias: thm -> theory -> theory end; structure Nbe: NBE = struct (* generic non-sense *) val trace = Attrib.setup_config_bool \<^binding>\<open>nbe_trace\<close> (K false); fun traced ctxt f x = if Config.get ctxt trace then (tracing (f x); x) else x; (** certificates and oracle for "trivial type classes" **) structure Triv_Class_Data = Theory_Data ( type T = (class * thm) list; val empty = []; val extend = I; fun merge data : T = AList.merge (op =) (K true) data; ); fun add_const_alias thm thy = let val (ofclass, eqn) = case try Logic.dest_equals (Thm.prop_of thm) of SOME ofclass_eq => ofclass_eq | _ => error ("Bad certificate: " ^ Thm.string_of_thm_global thy thm); val (T, class) = case try Logic.dest_of_class ofclass of SOME T_class => T_class | _ => error ("Bad certificate: " ^ Thm.string_of_thm_global thy thm); val tvar = case try Term.dest_TVar T of SOME (tvar as (_, sort)) => if null (filter (can (Axclass.get_info thy)) sort) then tvar else error ("Bad sort: " ^ Thm.string_of_thm_global thy thm) | _ => error ("Bad type: " ^ Thm.string_of_thm_global thy thm); val _ = if Term.add_tvars eqn [] = [tvar] then () else error ("Inconsistent type: " ^ Thm.string_of_thm_global thy thm); val lhs_rhs = case try Logic.dest_equals eqn of SOME lhs_rhs => lhs_rhs | _ => error ("Not an equation: " ^ Syntax.string_of_term_global thy eqn); val c_c' = case try (apply2 (Axclass.unoverload_const thy o dest_Const)) lhs_rhs of SOME c_c' => c_c' | _ => error ("Not an equation with two constants: " ^ Syntax.string_of_term_global thy eqn); val _ = if the_list (Axclass.class_of_param thy (snd c_c')) = [class] then () else error ("Inconsistent class: " ^ Thm.string_of_thm_global thy thm); in Triv_Class_Data.map (AList.update (op =) (class, Thm.trim_context thm)) thy end; local val get_triv_classes = map fst o Triv_Class_Data.get; val (_, triv_of_class) = Context.>>> (Context.map_theory_result (Thm.add_oracle (\<^binding>\<open>triv_of_class\<close>, fn (thy, T, class) => Thm.global_cterm_of thy (Logic.mk_of_class (T, class))))); in fun lift_triv_classes_conv orig_ctxt conv ct = let val thy = Proof_Context.theory_of orig_ctxt; val ctxt = Proof_Context.init_global thy; (*FIXME quasi-global context*) val algebra = Sign.classes_of thy; val triv_classes = get_triv_classes thy; fun additional_classes sort = filter_out (fn class => Sorts.sort_le algebra (sort, [class])) triv_classes; fun mk_entry (v, sort) = let val T = TFree (v, sort); val cT = Thm.ctyp_of ctxt T; val triv_sort = additional_classes sort; in (v, (Sorts.inter_sort algebra (sort, triv_sort), (cT, AList.make (fn class => Thm.of_class (cT, class)) sort @ AList.make (fn class => triv_of_class (thy, T, class)) triv_sort))) end; val vs_tab = map mk_entry (Term.add_tfrees (Thm.term_of ct) []); fun instantiate thm = let val tvars = Term.add_tvars (#1 (Logic.dest_equals (Logic.strip_imp_concl (Thm.prop_of thm)))) []; val instT = map2 (fn v => fn (_, (_, (cT, _))) => (v, cT)) tvars vs_tab; in Thm.instantiate (instT, []) thm end; fun of_class (TFree (v, _), class) = the (AList.lookup (op =) ((snd o snd o the o AList.lookup (op =) vs_tab) v) class) | of_class (T, _) = error ("Bad type " ^ Syntax.string_of_typ ctxt T); fun strip_of_class thm = let val prems_of_class = Thm.prop_of thm |> Logic.strip_imp_prems |> map (Logic.dest_of_class #> of_class); in fold Thm.elim_implies prems_of_class thm end; in ct |> Thm.term_of |> (map_types o map_type_tfree) (fn (v, _) => TFree (v, (fst o the o AList.lookup (op =) vs_tab) v)) |> Thm.cterm_of ctxt |> conv ctxt |> Thm.strip_shyps |> Thm.varifyT_global |> Thm.unconstrainT |> instantiate |> strip_of_class end; fun lift_triv_classes_rew ctxt rew t = let val thy = Proof_Context.theory_of ctxt; val algebra = Sign.classes_of thy; val triv_classes = get_triv_classes thy; val vs = Term.add_tfrees t []; in t |> (map_types o map_type_tfree) (fn (v, sort) => TFree (v, Sorts.inter_sort algebra (sort, triv_classes))) |> rew |> (map_types o map_type_tfree) (fn (v, sort) => TFree (v, the_default sort (AList.lookup (op =) vs v))) end; end; (** the semantic universe **) (* Functions are given by their semantical function value. To avoid trouble with the ML-type system, these functions have the most generic type, that is "Univ list -> Univ". The calling convention is that the arguments come as a list, the last argument first. In other words, a function call that usually would look like f x_1 x_2 ... x_n or f(x_1,x_2, ..., x_n) would be in our convention called as f [x_n,..,x_2,x_1] Moreover, to handle functions that are still waiting for some arguments we have additionally a list of arguments collected to far and the number of arguments we're still waiting for. *) datatype Univ = Const of int * Univ list (*named (uninterpreted) constants*) | DFree of string * int (*free (uninterpreted) dictionary parameters*) | BVar of int * Univ list (*bound variables, named*) | Abs of (int * (Univ list -> Univ)) * Univ list (*abstractions as closures*); (* constructor functions *) fun abss n f = Abs ((n, f), []); fun apps (Abs ((n, f), xs)) ys = let val k = n - length ys in case int_ord (k, 0) of EQUAL => f (ys @ xs) | LESS => let val (zs, ws) = chop (~ k) ys in apps (f (ws @ xs)) zs end | GREATER => Abs ((k, f), ys @ xs) (*note: reverse convention also for apps!*) end | apps (Const (name, xs)) ys = Const (name, ys @ xs) | apps (BVar (n, xs)) ys = BVar (n, ys @ xs); fun same (Const (k, xs), Const (l, ys)) = k = l andalso eq_list same (xs, ys) | same (DFree (s, k), DFree (t, l)) = s = t andalso k = l | same (BVar (k, xs), BVar (l, ys)) = k = l andalso eq_list same (xs, ys) | same _ = false; (** assembling and compiling ML code from terms **) (* abstract ML syntax *) infix 9 `$` `$$`; fun e1 `$` e2 = "(" ^ e1 ^ " " ^ e2 ^ ")"; fun e `$$` [] = e | e `$$` es = "(" ^ e ^ " " ^ space_implode " " es ^ ")"; fun ml_abs v e = "(fn " ^ v ^ " => " ^ e ^ ")"; fun ml_cases t cs = "(case " ^ t ^ " of " ^ space_implode " | " (map (fn (p, t) => p ^ " => " ^ t) cs) ^ ")"; fun ml_Let d e = "let\n" ^ d ^ " in " ^ e ^ " end"; fun ml_as v t = "(" ^ v ^ " as " ^ t ^ ")"; fun ml_and [] = "true" | ml_and [x] = x | ml_and xs = "(" ^ space_implode " andalso " xs ^ ")"; fun ml_if b x y = "(if " ^ b ^ " then " ^ x ^ " else " ^ y ^ ")"; fun ml_list es = "[" ^ commas es ^ "]"; fun ml_fundefs ([(name, [([], e)])]) = "val " ^ name ^ " = " ^ e ^ "\n" | ml_fundefs (eqs :: eqss) = let fun fundef (name, eqs) = let fun eqn (es, e) = name ^ " " ^ space_implode " " es ^ " = " ^ e in space_implode "\n | " (map eqn eqs) end; in (prefix "fun " o fundef) eqs :: map (prefix "and " o fundef) eqss |> cat_lines |> suffix "\n" end; (* nbe specific syntax and sandbox communication *) structure Univs = Proof_Data ( type T = unit -> Univ list -> Univ list; val empty: T = fn () => raise Fail "Univs"; fun init _ = empty; ); val get_result = Univs.get; val put_result = Univs.put; local val prefix = "Nbe."; val name_put = prefix ^ "put_result"; val name_const = prefix ^ "Const"; val name_abss = prefix ^ "abss"; val name_apps = prefix ^ "apps"; val name_same = prefix ^ "same"; in val univs_cookie = (get_result, put_result, name_put); fun nbe_fun idx_of 0 (Code_Symbol.Constant "") = "nbe_value" | nbe_fun idx_of i sym = "c_" ^ string_of_int (idx_of sym) ^ "_" ^ Code_Symbol.default_base sym ^ "_" ^ string_of_int i; fun nbe_dict v n = "d_" ^ v ^ "_" ^ string_of_int n; fun nbe_bound v = "v_" ^ v; fun nbe_bound_optional NONE = "_" | nbe_bound_optional (SOME v) = nbe_bound v; fun nbe_default v = "w_" ^ v; (*note: these three are the "turning spots" where proper argument order is established!*) fun nbe_apps t [] = t | nbe_apps t ts = name_apps `$$` [t, ml_list (rev ts)]; fun nbe_apps_local idx_of i c ts = nbe_fun idx_of i c `$` ml_list (rev ts); fun nbe_apps_constr ctxt idx_of c ts = let val c' = if Config.get ctxt trace then string_of_int (idx_of c) ^ " (*" ^ Code_Symbol.default_base c ^ "*)" else string_of_int (idx_of c); in name_const `$` ("(" ^ c' ^ ", " ^ ml_list (rev ts) ^ ")") end; fun nbe_abss 0 f = f `$` ml_list [] | nbe_abss n f = name_abss `$$` [string_of_int n, f]; fun nbe_same (v1, v2) = "(" ^ name_same ^ " (" ^ nbe_bound v1 ^ ", " ^ nbe_bound v2 ^ "))"; end; open Basic_Code_Symbol; open Basic_Code_Thingol; (* code generation *) fun assemble_eqnss ctxt idx_of deps eqnss = let fun prep_eqns (c, (vs, eqns)) = let val dicts = maps (fn (v, sort) => map_index (nbe_dict v o fst) sort) vs; val num_args = length dicts + ((length o fst o hd) eqns); in (c, (num_args, (dicts, eqns))) end; val eqnss' = map prep_eqns eqnss; fun assemble_constapp sym dss ts = let val ts' = (maps o map) assemble_dict dss @ ts; in case AList.lookup (op =) eqnss' sym of SOME (num_args, _) => if num_args <= length ts' then let val (ts1, ts2) = chop num_args ts' in nbe_apps (nbe_apps_local idx_of 0 sym ts1) ts2 end else nbe_apps (nbe_abss num_args (nbe_fun idx_of 0 sym)) ts' | NONE => if member (op =) deps sym then nbe_apps (nbe_fun idx_of 0 sym) ts' else nbe_apps_constr ctxt idx_of sym ts' end and assemble_classrels classrels = fold_rev (fn classrel => assemble_constapp (Class_Relation classrel) [] o single) classrels and assemble_dict (Dict (classrels, x)) = assemble_classrels classrels (assemble_plain_dict x) and assemble_plain_dict (Dict_Const (inst, dss)) = assemble_constapp (Class_Instance inst) dss [] | assemble_plain_dict (Dict_Var { var, index, ... }) = nbe_dict var index fun assemble_iterm constapp = let fun of_iterm match_cont t = let val (t', ts) = Code_Thingol.unfold_app t in of_iapp match_cont t' (fold_rev (cons o of_iterm NONE) ts []) end and of_iapp match_cont (IConst { sym, dicts = dss, ... }) ts = constapp sym dss ts | of_iapp match_cont (IVar v) ts = nbe_apps (nbe_bound_optional v) ts | of_iapp match_cont ((v, _) `|=> t) ts = nbe_apps (nbe_abss 1 (ml_abs (ml_list [nbe_bound_optional v]) (of_iterm NONE t))) ts | of_iapp match_cont (ICase { term = t, clauses = clauses, primitive = t0, ... }) ts = nbe_apps (ml_cases (of_iterm NONE t) (map (fn (p, t) => (of_iterm NONE p, of_iterm match_cont t)) clauses @ [("_", case match_cont of SOME s => s | NONE => of_iterm NONE t0)])) ts in of_iterm end; fun subst_nonlin_vars args = let val vs = (fold o Code_Thingol.fold_varnames) (fn v => AList.map_default (op =) (v, 0) (Integer.add 1)) args []; val names = Name.make_context (map fst vs); fun declare v k ctxt = let val vs = Name.invent ctxt v k in (vs, fold Name.declare vs ctxt) end; val (vs_renames, _) = fold_map (fn (v, k) => if k > 1 then declare v (k - 1) #>> (fn vs => (v, vs)) else pair (v, [])) vs names; val samepairs = maps (fn (v, vs) => map (pair v) vs) vs_renames; fun subst_vars (t as IConst _) samepairs = (t, samepairs) | subst_vars (t as IVar NONE) samepairs = (t, samepairs) | subst_vars (t as IVar (SOME v)) samepairs = (case AList.lookup (op =) samepairs v of SOME v' => (IVar (SOME v'), AList.delete (op =) v samepairs) | NONE => (t, samepairs)) | subst_vars (t1 `$ t2) samepairs = samepairs |> subst_vars t1 ||>> subst_vars t2 |>> (op `$) | subst_vars (ICase { primitive = t, ... }) samepairs = subst_vars t samepairs; val (args', _) = fold_map subst_vars args samepairs; in (samepairs, args') end; fun assemble_eqn sym dicts default_args (i, (args, rhs)) = let val match_cont = if Code_Symbol.is_value sym then NONE else SOME (nbe_apps_local idx_of (i + 1) sym (dicts @ default_args)); val assemble_arg = assemble_iterm (fn sym' => fn dss => fn ts => nbe_apps_constr ctxt idx_of sym' ((maps o map) (K "_") dss @ ts)) NONE; val assemble_rhs = assemble_iterm assemble_constapp match_cont; val (samepairs, args') = subst_nonlin_vars args; val s_args = map assemble_arg args'; val s_rhs = if null samepairs then assemble_rhs rhs else ml_if (ml_and (map nbe_same samepairs)) (assemble_rhs rhs) (the match_cont); val eqns = case match_cont of NONE => [([ml_list (rev (dicts @ s_args))], s_rhs)] | SOME default_rhs => [([ml_list (rev (dicts @ map2 ml_as default_args s_args))], s_rhs), ([ml_list (rev (dicts @ default_args))], default_rhs)] in (nbe_fun idx_of i sym, eqns) end; fun assemble_eqns (sym, (num_args, (dicts, eqns))) = let val default_args = map nbe_default (Name.invent Name.context "a" (num_args - length dicts)); val eqns' = map_index (assemble_eqn sym dicts default_args) eqns @ (if Code_Symbol.is_value sym then [] else [(nbe_fun idx_of (length eqns) sym, [([ml_list (rev (dicts @ default_args))], nbe_apps_constr ctxt idx_of sym (dicts @ default_args))])]); in (eqns', nbe_abss num_args (nbe_fun idx_of 0 sym)) end; val (fun_vars, fun_vals) = map_split assemble_eqns eqnss'; val deps_vars = ml_list (map (nbe_fun idx_of 0) deps); in ml_abs deps_vars (ml_Let (ml_fundefs (flat fun_vars)) (ml_list fun_vals)) end; (* compilation of equations *) fun compile_eqnss ctxt nbe_program raw_deps [] = [] | compile_eqnss ctxt nbe_program raw_deps eqnss = let val (deps, deps_vals) = split_list (map_filter (fn dep => Option.map (fn univ => (dep, univ)) (fst ((Code_Symbol.Graph.get_node nbe_program dep)))) raw_deps); val idx_of = raw_deps |> map (fn dep => (dep, snd (Code_Symbol.Graph.get_node nbe_program dep))) |> AList.lookup (op =) |> (fn f => the o f); val s = assemble_eqnss ctxt idx_of deps eqnss; val cs = map fst eqnss; in s |> traced ctxt (fn s => "\n--- code to be evaluated:\n" ^ s) |> pair "" |> Code_Runtime.value ctxt univs_cookie |> (fn f => f deps_vals) |> (fn univs => cs ~~ univs) end; (* extraction of equations from statements *) fun dummy_const sym dss = IConst { sym = sym, typargs = [], dicts = dss, dom = [], annotation = NONE }; fun eqns_of_stmt (_, Code_Thingol.NoStmt) = [] | eqns_of_stmt (_, Code_Thingol.Fun ((_, []), _)) = [] | eqns_of_stmt (sym_const, Code_Thingol.Fun (((vs, _), eqns), _)) = [(sym_const, (vs, map fst eqns))] | eqns_of_stmt (_, Code_Thingol.Datatypecons _) = [] | eqns_of_stmt (_, Code_Thingol.Datatype _) = [] | eqns_of_stmt (sym_class, Code_Thingol.Class (v, (classrels, classparams))) = let val syms = map Class_Relation classrels @ map (Constant o fst) classparams; val params = Name.invent Name.context "d" (length syms); fun mk (k, sym) = (sym, ([(v, [])], [([dummy_const sym_class [] `$$ map (IVar o SOME) params], IVar (SOME (nth params k)))])); in map_index mk syms end | eqns_of_stmt (_, Code_Thingol.Classrel _) = [] | eqns_of_stmt (_, Code_Thingol.Classparam _) = [] | eqns_of_stmt (sym_inst, Code_Thingol.Classinst { class, tyco, vs, superinsts, inst_params, ... }) = [(sym_inst, (vs, [([], dummy_const (Type_Class class) [] `$$ map (fn (class, dss) => dummy_const (Class_Instance (tyco, class)) dss) superinsts @ map (IConst o fst o snd o fst) inst_params)]))]; (* compilation of whole programs *) fun ensure_const_idx name (nbe_program, (maxidx, idx_tab)) = if can (Code_Symbol.Graph.get_node nbe_program) name then (nbe_program, (maxidx, idx_tab)) else (Code_Symbol.Graph.new_node (name, (NONE, maxidx)) nbe_program, (maxidx + 1, Inttab.update_new (maxidx, name) idx_tab)); fun compile_stmts ctxt stmts_deps = let val names = map (fst o fst) stmts_deps; val names_deps = map (fn ((name, _), deps) => (name, deps)) stmts_deps; val eqnss = maps (eqns_of_stmt o fst) stmts_deps; val refl_deps = names_deps |> maps snd |> distinct (op =) |> fold (insert (op =)) names; fun compile nbe_program = eqnss |> compile_eqnss ctxt nbe_program refl_deps |> rpair nbe_program; in fold ensure_const_idx refl_deps #> apfst (fold (fn (name, deps) => fold (curry Code_Symbol.Graph.add_edge name) deps) names_deps #> compile #-> fold (fn (name, univ) => (Code_Symbol.Graph.map_node name o apfst) (K (SOME univ)))) end; fun compile_program { ctxt, program } = let fun add_stmts names (nbe_program, (maxidx, idx_tab)) = if exists ((can o Code_Symbol.Graph.get_node) nbe_program) names then (nbe_program, (maxidx, idx_tab)) else (nbe_program, (maxidx, idx_tab)) |> compile_stmts ctxt (map (fn name => ((name, Code_Symbol.Graph.get_node program name), Code_Symbol.Graph.immediate_succs program name)) names); in fold_rev add_stmts (Code_Symbol.Graph.strong_conn program) end; (** normalization **) (* compilation and reconstruction of terms *) fun compile_term { ctxt, nbe_program, deps, term = (vs, t) } = let val dict_frees = maps (fn (v, sort) => map_index (curry DFree v o fst) sort) vs; in (Code_Symbol.value, (vs, [([], t)])) |> singleton (compile_eqnss ctxt nbe_program deps) |> snd |> (fn t => apps t (rev dict_frees)) end; fun reconstruct_term ctxt (idx_tab : Code_Symbol.T Inttab.table) t = let fun take_until f [] = [] | take_until f (x :: xs) = if f x then [] else x :: take_until f xs; fun is_dict (Const (idx, _)) = (case Inttab.lookup idx_tab idx of SOME (Constant _) => false | _ => true) | is_dict (DFree _) = true | is_dict _ = false; fun const_of_idx idx = case Inttab.lookup idx_tab idx of SOME (Constant const) => const; fun of_apps bounds (t, ts) = fold_map (of_univ bounds) ts #>> (fn ts' => list_comb (t, rev ts')) and of_univ bounds (Const (idx, ts)) typidx = let val ts' = take_until is_dict ts; val const = const_of_idx idx; val T = map_type_tvar (fn ((v, i), _) => Type_Infer.param typidx (v ^ string_of_int i, [])) (Sign.the_const_type (Proof_Context.theory_of ctxt) const); val typidx' = typidx + 1; in of_apps bounds (Term.Const (const, T), ts') typidx' end | of_univ bounds (BVar (n, ts)) typidx = of_apps bounds (Bound (bounds - n - 1), ts) typidx | of_univ bounds (t as Abs _) typidx = typidx |> of_univ (bounds + 1) (apps t [BVar (bounds, [])]) |-> (fn t' => pair (Term.Abs ("u", dummyT, t'))) in of_univ 0 t 0 |> fst end; fun compile_and_reconstruct_term { ctxt, nbe_program, idx_tab, deps, term } = compile_term { ctxt = ctxt, nbe_program = nbe_program, deps = deps, term = term } |> reconstruct_term ctxt idx_tab; fun normalize_term (nbe_program, idx_tab) raw_ctxt t_original ((vs, ty) : typscheme, t) deps = let val ctxt = Syntax.init_pretty_global (Proof_Context.theory_of raw_ctxt); val string_of_term = Syntax.string_of_term (Config.put show_types true ctxt); fun type_infer t' = Syntax.check_term (ctxt |> Config.put Type_Infer.object_logic false |> Config.put Type_Infer_Context.const_sorts false) (Type.constraint (fastype_of t_original) t'); fun check_tvars t' = if null (Term.add_tvars t' []) then t' else error ("Illegal schematic type variables in normalized term: " ^ string_of_term t'); in Code_Preproc.timed "computing NBE expression" #ctxt compile_and_reconstruct_term { ctxt = ctxt, nbe_program = nbe_program, idx_tab = idx_tab, deps = deps, term = (vs, t) } |> traced ctxt (fn t => "Normalized:\n" ^ string_of_term t) |> type_infer |> traced ctxt (fn t => "Types inferred:\n" ^ string_of_term t) |> check_tvars |> traced ctxt (fn _ => "---\n") end; (* function store *) structure Nbe_Functions = Code_Data ( type T = (Univ option * int) Code_Symbol.Graph.T * (int * Code_Symbol.T Inttab.table); val empty = (Code_Symbol.Graph.empty, (0, Inttab.empty)); ); fun compile ignore_cache ctxt program = let val (nbe_program, (_, idx_tab)) = Nbe_Functions.change (if ignore_cache then NONE else SOME (Proof_Context.theory_of ctxt)) (Code_Preproc.timed "compiling NBE program" #ctxt compile_program { ctxt = ctxt, program = program }); in (nbe_program, idx_tab) end; (* evaluation oracle *) fun mk_equals ctxt lhs raw_rhs = let val ty = Thm.typ_of_cterm lhs; val eq = Thm.cterm_of ctxt (Term.Const (\<^const_name>\<open>Pure.eq\<close>, ty --> ty --> propT)); val rhs = Thm.cterm_of ctxt raw_rhs; in Thm.mk_binop eq lhs rhs end; val (_, raw_oracle) = Context.>>> (Context.map_theory_result (Thm.add_oracle (\<^binding>\<open>normalization_by_evaluation\<close>, fn (nbe_program_idx_tab, ctxt, vs_ty_t, deps, ct) => mk_equals ctxt ct (normalize_term nbe_program_idx_tab ctxt (Thm.term_of ct) vs_ty_t deps)))); fun oracle nbe_program_idx_tab ctxt vs_ty_t deps ct = raw_oracle (nbe_program_idx_tab, ctxt, vs_ty_t, deps, ct); fun dynamic_conv ctxt = lift_triv_classes_conv ctxt (fn ctxt' => Code_Thingol.dynamic_conv ctxt' (fn program => oracle (compile false ctxt program) ctxt')); fun dynamic_value ctxt = lift_triv_classes_rew ctxt (Code_Thingol.dynamic_value ctxt I (fn program => normalize_term (compile false ctxt program) ctxt)); fun static_conv (ctxt_consts as { ctxt, ... }) = let val conv = Code_Thingol.static_conv_thingol ctxt_consts (fn { program, deps = _ } => oracle (compile true ctxt program)); in fn ctxt' => lift_triv_classes_conv ctxt' conv end; fun static_value { ctxt, consts } = let val comp = Code_Thingol.static_value { ctxt = ctxt, lift_postproc = I, consts = consts } (fn { program, deps = _ } => normalize_term (compile false ctxt program)); in fn ctxt' => lift_triv_classes_rew ctxt' (comp ctxt') end; end;