(* Title: FOLP/simpdata.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1991 University of Cambridge
Simplification data for FOLP
*)
(*** Rewrite rules ***)
fun int_prove_fun_raw s =
(writeln s; prove_goal IFOLP.thy s
(fn prems => [ (cut_facts_tac prems 1), (IntPr.fast_tac 1) ]));
fun int_prove_fun s = int_prove_fun_raw ("?p : "^s);
val conj_rews = map int_prove_fun
["P & True <-> P", "True & P <-> P",
"P & False <-> False", "False & P <-> False",
"P & P <-> P",
"P & ~P <-> False", "~P & P <-> False",
"(P & Q) & R <-> P & (Q & R)"];
val disj_rews = map int_prove_fun
["P | True <-> True", "True | P <-> True",
"P | False <-> P", "False | P <-> P",
"P | P <-> P",
"(P | Q) | R <-> P | (Q | R)"];
val not_rews = map int_prove_fun
["~ False <-> True", "~ True <-> False"];
val imp_rews = map int_prove_fun
["(P --> False) <-> ~P", "(P --> True) <-> True",
"(False --> P) <-> True", "(True --> P) <-> P",
"(P --> P) <-> True", "(P --> ~P) <-> ~P"];
val iff_rews = map int_prove_fun
["(True <-> P) <-> P", "(P <-> True) <-> P",
"(P <-> P) <-> True",
"(False <-> P) <-> ~P", "(P <-> False) <-> ~P"];
val quant_rews = map int_prove_fun
["(ALL x. P) <-> P", "(EX x. P) <-> P"];
(*These are NOT supplied by default!*)
val distrib_rews = map int_prove_fun
["~(P|Q) <-> ~P & ~Q",
"P & (Q | R) <-> P&Q | P&R", "(Q | R) & P <-> Q&P | R&P",
"(P | Q --> R) <-> (P --> R) & (Q --> R)",
"~(EX x. NORM(P(x))) <-> (ALL x. ~NORM(P(x)))",
"((EX x. NORM(P(x))) --> Q) <-> (ALL x. NORM(P(x)) --> Q)",
"(EX x. NORM(P(x))) & NORM(Q) <-> (EX x. NORM(P(x)) & NORM(Q))",
"NORM(Q) & (EX x. NORM(P(x))) <-> (EX x. NORM(Q) & NORM(P(x)))"];
val P_Imp_P_iff_T = int_prove_fun_raw "p:P ==> ?p:(P <-> True)";
fun make_iff_T th = th RS P_Imp_P_iff_T;
val refl_iff_T = make_iff_T refl;
val norm_thms = [(norm_eq RS sym, norm_eq),
(NORM_iff RS iff_sym, NORM_iff)];
(* Conversion into rewrite rules *)
val not_P_imp_P_iff_F = int_prove_fun_raw "p:~P ==> ?p:(P <-> False)";
fun mk_eq th = case concl_of th of
_ $ (Const("op <->",_)$_$_) $ _ => th
| _ $ (Const("op =",_)$_$_) $ _ => th
| _ $ (Const("Not",_)$_) $ _ => th RS not_P_imp_P_iff_F
| _ => make_iff_T th;
fun atomize th = case concl_of th of (*The operator below is "Proof $ P $ p"*)
_ $ (Const("op -->",_) $ _ $ _) $ _ => atomize(th RS mp)
| _ $ (Const("op &",_) $ _ $ _) $ _ => atomize(th RS conjunct1) @
atomize(th RS conjunct2)
| _ $ (Const("All",_) $ _) $ _ => atomize(th RS spec)
| _ $ (Const("True",_)) $ _ => []
| _ $ (Const("False",_)) $ _ => []
| _ => [th];
fun mk_rew_rules th = map mk_eq (atomize th);
(*destruct function for analysing equations*)
fun dest_red(_ $ (red $ lhs $ rhs) $ _) = (red,lhs,rhs)
| dest_red t = raise TERM("FOL/dest_red", [t]);
structure FOLP_SimpData : SIMP_DATA =
struct
val refl_thms = [refl, iff_refl]
val trans_thms = [trans, iff_trans]
val red1 = iffD1
val red2 = iffD2
val mk_rew_rules = mk_rew_rules
val case_splits = [] (*NO IF'S!*)
val norm_thms = norm_thms
val subst_thms = [subst];
val dest_red = dest_red
end;
structure FOLP_Simp = SimpFun(FOLP_SimpData);
(*not a component of SIMP_DATA, but an argument of SIMP_TAC *)
val FOLP_congs =
[all_cong,ex_cong,eq_cong,
conj_cong,disj_cong,imp_cong,iff_cong,not_cong] @ pred_congs;
val IFOLP_rews =
[refl_iff_T] @ conj_rews @ disj_rews @ not_rews @
imp_rews @ iff_rews @ quant_rews;
open FOLP_Simp;
val auto_ss = empty_ss setauto ares_tac [TrueI];
val IFOLP_ss = auto_ss addcongs FOLP_congs addrews IFOLP_rews;
(*Classical version...*)
fun prove_fun s =
(writeln s; prove_goal FOLP.thy s
(fn prems => [ (cut_facts_tac prems 1), (Cla.fast_tac FOLP_cs 1) ]));
val cla_rews = map prove_fun
["?p:P | ~P", "?p:~P | P",
"?p:~ ~ P <-> P", "?p:(~P --> P) <-> P"];
val FOLP_rews = IFOLP_rews@cla_rews;
val FOLP_ss = auto_ss addcongs FOLP_congs addrews FOLP_rews;