src/CCL/Fix.ML
author paulson
Fri, 29 Oct 2004 15:16:02 +0200
changeset 15270 8b3f707a78a7
parent 5062 fbdb0b541314
child 17456 bcf7544875b2
permissions -rw-r--r--
fixed reference to renamed theorem

(*  Title:      CCL/fix
    ID:         $Id$
    Author:     Martin Coen, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge

For fix.thy.
*)

open Fix;

(*** Fixed Point Induction ***)

val [base,step,incl] = goalw Fix.thy [INCL_def]
    "[| P(bot);  !!x. P(x) ==> P(f(x));  INCL(P) |] ==> P(fix(f))";
by (rtac (incl RS spec RS mp) 1);
by (rtac (Nat_ind RS ballI) 1 THEN atac 1);
by (ALLGOALS (simp_tac term_ss));
by (REPEAT (ares_tac [base,step] 1));
qed "fix_ind";

(*** Inclusive Predicates ***)

val prems = goalw Fix.thy [INCL_def]
     "INCL(P) <-> (ALL f. (ALL n:Nat. P(f ^ n ` bot)) --> P(fix(f)))";
by (rtac iff_refl 1);
qed "inclXH";

val prems = goal Fix.thy
     "[| !!f. ALL n:Nat. P(f^n`bot) ==> P(fix(f)) |] ==> INCL(%x. P(x))";
by (fast_tac (term_cs addIs (prems @ [XH_to_I inclXH])) 1);
qed "inclI";

val incl::prems = goal Fix.thy
     "[| INCL(P);  !!n. n:Nat ==> P(f^n`bot) |] ==> P(fix(f))";
by (fast_tac (term_cs addIs ([ballI RS (incl RS (XH_to_D inclXH) RS spec RS mp)] 
                       @ prems)) 1);
qed "inclD";

val incl::prems = goal Fix.thy
     "[| INCL(P);  (ALL n:Nat. P(f^n`bot))-->P(fix(f)) ==> R |] ==> R";
by (fast_tac (term_cs addIs ([incl RS inclD] @ prems)) 1);
qed "inclE";


(*** Lemmas for Inclusive Predicates ***)

Goal "INCL(%x.~ a(x) [= t)";
by (rtac inclI 1);
by (dtac bspec 1);
by (rtac zeroT 1);
by (etac contrapos 1);
by (rtac po_trans 1);
by (assume_tac 2);
by (stac napplyBzero 1);
by (rtac po_cong 1 THEN rtac po_bot 1);
qed "npo_INCL";

val prems = goal Fix.thy "[| INCL(P);  INCL(Q) |] ==> INCL(%x. P(x) & Q(x))";
by (fast_tac (set_cs addSIs ([inclI] @ (prems RL [inclD]))) 1);;
qed "conj_INCL";

val prems = goal Fix.thy "[| !!a. INCL(P(a)) |] ==> INCL(%x. ALL a. P(a,x))";
by (fast_tac (set_cs addSIs ([inclI] @ (prems RL [inclD]))) 1);;
qed "all_INCL";

val prems = goal Fix.thy "[| !!a. a:A ==> INCL(P(a)) |] ==> INCL(%x. ALL a:A. P(a,x))";
by (fast_tac (set_cs addSIs ([inclI] @ (prems RL [inclD]))) 1);;
qed "ball_INCL";

Goal "INCL(%x. a(x) = (b(x)::'a::prog))";
by (simp_tac (term_ss addsimps [eq_iff]) 1);
by (REPEAT (resolve_tac [conj_INCL,po_INCL] 1));
qed "eq_INCL";

(*** Derivation of Reachability Condition ***)

(* Fixed points of idgen *)

Goal "idgen(fix(idgen)) = fix(idgen)";
by (rtac (fixB RS sym) 1);
qed "fix_idgenfp";

Goalw [idgen_def] "idgen(lam x. x) = lam x. x";
by (simp_tac term_ss 1);
by (rtac (term_case RS allI) 1);
by (ALLGOALS (simp_tac term_ss));
qed "id_idgenfp";

(* All fixed points are lam-expressions *)

val [prem] = goal Fix.thy "idgen(d) = d ==> d = lam x.?f(x)";
by (rtac (prem RS subst) 1);
by (rewtac idgen_def);
by (rtac refl 1);
qed "idgenfp_lam";

(* Lemmas for rewriting fixed points of idgen *)

val prems = goalw Fix.thy [idgen_def] 
    "[| a = b;  a ` t = u |] ==> b ` t = u";
by (simp_tac (term_ss addsimps (prems RL [sym])) 1);
qed "l_lemma";

val idgen_lemmas =
    let fun mk_thm s = prove_goalw Fix.thy [idgen_def] s
           (fn [prem] => [rtac (prem RS l_lemma) 1,simp_tac term_ss 1])
    in map mk_thm
          [    "idgen(d) = d ==> d ` bot = bot",
               "idgen(d) = d ==> d ` true = true",
               "idgen(d) = d ==> d ` false = false",
               "idgen(d) = d ==> d ` <a,b> = <d ` a,d ` b>",
               "idgen(d) = d ==> d ` (lam x. f(x)) = lam x. d ` f(x)"]
    end;

(* Proof of Reachability law - show that fix and lam x.x both give LEAST fixed points 
                               of idgen and hence are they same *)

val [p1,p2,p3] = goal CCL.thy
    "[| ALL x. t ` x [= u ` x;  EX f. t=lam x. f(x);  EX f. u=lam x. f(x) |] ==> t [= u";
by (stac (p2 RS cond_eta) 1);
by (stac (p3 RS cond_eta) 1);
by (rtac (p1 RS (po_lam RS iffD2)) 1);
qed "po_eta";

val [prem] = goalw Fix.thy [idgen_def] "idgen(d) = d ==> d = lam x.?f(x)";
by (rtac (prem RS subst) 1);
by (rtac refl 1);
qed "po_eta_lemma";

val [prem] = goal Fix.thy
    "idgen(d) = d ==> \
\      {p. EX a b. p=<a,b> & (EX t. a=fix(idgen) ` t & b = d ` t)} <=   \
\      POgen({p. EX a b. p=<a,b> & (EX t. a=fix(idgen) ` t  & b = d ` t)})";
by (REPEAT (step_tac term_cs 1));
by (term_case_tac "t" 1);
by (ALLGOALS (simp_tac (term_ss addsimps (POgenXH::([prem,fix_idgenfp] RL idgen_lemmas)))));
by (ALLGOALS (fast_tac set_cs));
qed "lemma1";

val [prem] = goal Fix.thy
    "idgen(d) = d ==> fix(idgen) [= d";
by (rtac (allI RS po_eta) 1);
by (rtac (lemma1 RSN(2,po_coinduct)) 1);
by (ALLGOALS (fast_tac (term_cs addIs [prem,po_eta_lemma,fix_idgenfp])));
qed "fix_least_idgen";

val [prem] = goal Fix.thy
    "idgen(d) = d ==> \
\      {p. EX a b. p=<a,b> & b = d ` a} <= POgen({p. EX a b. p=<a,b> & b = d ` a})";
by (REPEAT (step_tac term_cs 1));
by (term_case_tac "a" 1);
by (ALLGOALS (simp_tac (term_ss addsimps (POgenXH::([prem] RL idgen_lemmas)))));
by (ALLGOALS (fast_tac set_cs));
qed "lemma2";

val [prem] = goal Fix.thy
    "idgen(d) = d ==> lam x. x [= d";
by (rtac (allI RS po_eta) 1);
by (rtac (lemma2 RSN(2,po_coinduct)) 1);
by (simp_tac term_ss 1);
by (ALLGOALS (fast_tac (term_cs addIs [prem,po_eta_lemma,fix_idgenfp])));
qed "id_least_idgen";

Goal  "fix(idgen) = lam x. x";
by (fast_tac (term_cs addIs [eq_iff RS iffD2,
                             id_idgenfp RS fix_least_idgen,
                             fix_idgenfp RS id_least_idgen]) 1);
qed "reachability";

(********)

val [prem] = goal Fix.thy "f = lam x. x ==> f`t = t";
by (rtac (prem RS sym RS subst) 1);
by (rtac applyB 1);
qed "id_apply";

val prems = goal Fix.thy
     "[| P(bot);  P(true);  P(false);  \
\        !!x y.[| P(x);  P(y) |] ==> P(<x,y>);  \
\        !!u.(!!x. P(u(x))) ==> P(lam x. u(x));  INCL(P) |] ==> \
\     P(t)";
by (rtac (reachability RS id_apply RS subst) 1);
by (res_inst_tac [("x","t")] spec 1);
by (rtac fix_ind 1);
by (rewtac idgen_def);
by (REPEAT_SOME (ares_tac [allI]));
by (stac applyBbot 1);
by (resolve_tac prems 1);
br (applyB RS ssubst )1;
by (res_inst_tac [("t","xa")] term_case 1);
by (ALLGOALS (simp_tac term_ss));
by (ALLGOALS (fast_tac (term_cs addIs ([all_INCL,INCL_subst] @ prems))));
qed "term_ind";