(* Title: HOL/NatArith.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1998 University of Cambridge
Further proofs about elementary arithmetic, using the arithmetic proof
procedures.
*)
(*legacy ...*)
structure NatArith = struct val thy = the_context () end;
Goal "m <= m*(m::nat)";
by (induct_tac "m" 1);
by Auto_tac;
qed "le_square";
Goal "(m::nat) <= m*(m*m)";
by (induct_tac "m" 1);
by Auto_tac;
qed "le_cube";
(*** Subtraction laws -- mostly from Clemens Ballarin ***)
Goal "[| a < (b::nat); c <= a |] ==> a-c < b-c";
by (arith_tac 1);
qed "diff_less_mono";
Goal "(i < j-k) = (i+k < (j::nat))";
by (arith_tac 1);
qed "less_diff_conv";
Goal "(j-k <= (i::nat)) = (j <= i+k)";
by (arith_tac 1);
qed "le_diff_conv";
Goal "k <= j ==> (i <= j-k) = (i+k <= (j::nat))";
by (arith_tac 1);
qed "le_diff_conv2";
Goal "i <= (n::nat) ==> n - (n - i) = i";
by (arith_tac 1);
qed "diff_diff_cancel";
Addsimps [diff_diff_cancel];
Goal "k <= (n::nat) ==> m <= n + m - k";
by (arith_tac 1);
qed "le_add_diff";
(*Replaces the previous diff_less and le_diff_less, which had the stronger
second premise n<=m*)
Goal "!!m::nat. [| 0<n; 0<m |] ==> m - n < m";
by (arith_tac 1);
qed "diff_less";
(** Simplification of relational expressions involving subtraction **)
Goal "[| k <= m; k <= (n::nat) |] ==> ((m-k) - (n-k)) = (m-n)";
by (asm_simp_tac (simpset() addsplits [nat_diff_split]) 1);
qed "diff_diff_eq";
Goal "[| k <= m; k <= (n::nat) |] ==> (m-k = n-k) = (m=n)";
by (auto_tac (claset(), simpset() addsplits [nat_diff_split]));
qed "eq_diff_iff";
Goal "[| k <= m; k <= (n::nat) |] ==> (m-k < n-k) = (m<n)";
by (auto_tac (claset(), simpset() addsplits [nat_diff_split]));
qed "less_diff_iff";
Goal "[| k <= m; k <= (n::nat) |] ==> (m-k <= n-k) = (m<=n)";
by (auto_tac (claset(), simpset() addsplits [nat_diff_split]));
qed "le_diff_iff";
(** (Anti)Monotonicity of subtraction -- by Stephan Merz **)
(* Monotonicity of subtraction in first argument *)
Goal "m <= (n::nat) ==> (m-l) <= (n-l)";
by (asm_simp_tac (simpset() addsplits [nat_diff_split]) 1);
qed "diff_le_mono";
Goal "m <= (n::nat) ==> (l-n) <= (l-m)";
by (asm_simp_tac (simpset() addsplits [nat_diff_split]) 1);
qed "diff_le_mono2";
Goal "[| m < (n::nat); m<l |] ==> (l-n) < (l-m)";
by (asm_simp_tac (simpset() addsplits [nat_diff_split]) 1);
qed "diff_less_mono2";
Goal "!!m::nat. [| m-n = 0; n-m = 0 |] ==> m=n";
by (asm_full_simp_tac (simpset() addsplits [nat_diff_split]) 1);
qed "diffs0_imp_equal";
(** Lemmas for ex/Factorization **)
Goal "!!m::nat. [| Suc 0 < n; Suc 0 < m |] ==> Suc 0 < m*n";
by (case_tac "m" 1);
by Auto_tac;
qed "one_less_mult";
Goal "!!m::nat. [| Suc 0 < n; Suc 0 < m |] ==> n<m*n";
by (case_tac "m" 1);
by Auto_tac;
qed "n_less_m_mult_n";
Goal "!!m::nat. [| Suc 0 < n; Suc 0 < m |] ==> n<n*m";
by (case_tac "m" 1);
by Auto_tac;
qed "n_less_n_mult_m";
(** Rewriting to pull differences out **)
Goal "k<=j --> i - (j - k) = i + (k::nat) - j";
by (arith_tac 1);
qed "diff_diff_right";
Goal "k <= j ==> m - Suc (j - k) = m + k - Suc j";
by (arith_tac 1);
qed "diff_Suc_diff_eq1";
Goal "k <= j ==> Suc (j - k) - m = Suc j - (k + m)";
by (arith_tac 1);
qed "diff_Suc_diff_eq2";
(*The others are
i - j - k = i - (j + k),
k <= j ==> j - k + i = j + i - k,
k <= j ==> i + (j - k) = i + j - k *)
Addsimps [diff_diff_left, diff_diff_right, diff_add_assoc2 RS sym,
diff_add_assoc RS sym, diff_Suc_diff_eq1, diff_Suc_diff_eq2];
(*No analogue of not_less_Least or Least_Suc yet, since it isn't used much*)