(* Title: HOL/ex/BinEx.thy
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1998 University of Cambridge
*)
header {* Binary arithmetic examples *}
theory BinEx = Main:
subsection {* Regression Testing for Cancellation Simprocs *}
(*taken from HOL/Integ/int_arith1.ML *)
lemma "l + 2 + 2 + 2 + (l + 2) + (oo + 2) = (uu::int)"
apply simp oops
lemma "2*u = (u::int)"
apply simp oops
lemma "(i + j + 12 + (k::int)) - 15 = y"
apply simp oops
lemma "(i + j + 12 + (k::int)) - 5 = y"
apply simp oops
lemma "y - b < (b::int)"
apply simp oops
lemma "y - (3*b + c) < (b::int) - 2*c"
apply simp oops
lemma "(2*x - (u*v) + y) - v*3*u = (w::int)"
apply simp oops
lemma "(2*x*u*v + (u*v)*4 + y) - v*u*4 = (w::int)"
apply simp oops
lemma "(2*x*u*v + (u*v)*4 + y) - v*u = (w::int)"
apply simp oops
lemma "u*v - (x*u*v + (u*v)*4 + y) = (w::int)"
apply simp oops
lemma "(i + j + 12 + (k::int)) = u + 15 + y"
apply simp oops
lemma "(i + j*2 + 12 + (k::int)) = j + 5 + y"
apply simp oops
lemma "2*y + 3*z + 6*w + 2*y + 3*z + 2*u = 2*y' + 3*z' + 6*w' + 2*y' + 3*z' + u + (vv::int)"
apply simp oops
lemma "a + -(b+c) + b = (d::int)"
apply simp oops
lemma "a + -(b+c) - b = (d::int)"
apply simp oops
(*negative numerals*)
lemma "(i + j + -2 + (k::int)) - (u + 5 + y) = zz"
apply simp oops
lemma "(i + j + -3 + (k::int)) < u + 5 + y"
apply simp oops
lemma "(i + j + 3 + (k::int)) < u + -6 + y"
apply simp oops
lemma "(i + j + -12 + (k::int)) - 15 = y"
apply simp oops
lemma "(i + j + 12 + (k::int)) - -15 = y"
apply simp oops
lemma "(i + j + -12 + (k::int)) - -15 = y"
apply simp oops
lemma "- (2*i) + 3 + (2*i + 4) = (0::int)"
apply simp oops
subsection {* Arithmetic Method Tests *}
lemma "!!a::int. [| a <= b; c <= d; x+y<z |] ==> a+c <= b+d"
by arith
lemma "!!a::int. [| a < b; c < d |] ==> a-d+ 2 <= b+(-c)"
by arith
lemma "!!a::int. [| a < b; c < d |] ==> a+c+ 1 < b+d"
by arith
lemma "!!a::int. [| a <= b; b+b <= c |] ==> a+a <= c"
by arith
lemma "!!a::int. [| a+b <= i+j; a<=b; i<=j |] ==> a+a <= j+j"
by arith
lemma "!!a::int. [| a+b < i+j; a<b; i<j |] ==> a+a - - -1 < j+j - 3"
by arith
lemma "!!a::int. a+b+c <= i+j+k & a<=b & b<=c & i<=j & j<=k --> a+a+a <= k+k+k"
by arith
lemma "!!a::int. [| a+b+c+d <= i+j+k+l; a<=b; b<=c; c<=d; i<=j; j<=k; k<=l |]
==> a <= l"
by arith
lemma "!!a::int. [| a+b+c+d <= i+j+k+l; a<=b; b<=c; c<=d; i<=j; j<=k; k<=l |]
==> a+a+a+a <= l+l+l+l"
by arith
lemma "!!a::int. [| a+b+c+d <= i+j+k+l; a<=b; b<=c; c<=d; i<=j; j<=k; k<=l |]
==> a+a+a+a+a <= l+l+l+l+i"
by arith
lemma "!!a::int. [| a+b+c+d <= i+j+k+l; a<=b; b<=c; c<=d; i<=j; j<=k; k<=l |]
==> a+a+a+a+a+a <= l+l+l+l+i+l"
by arith
lemma "!!a::int. [| a+b+c+d <= i+j+k+l; a<=b; b<=c; c<=d; i<=j; j<=k; k<=l |]
==> 6*a <= 5*l+i"
by arith
subsection {* The Integers *}
text {* Addition *}
lemma "(13::int) + 19 = 32"
by simp
lemma "(1234::int) + 5678 = 6912"
by simp
lemma "(1359::int) + -2468 = -1109"
by simp
lemma "(93746::int) + -46375 = 47371"
by simp
text {* \medskip Negation *}
lemma "- (65745::int) = -65745"
by simp
lemma "- (-54321::int) = 54321"
by simp
text {* \medskip Multiplication *}
lemma "(13::int) * 19 = 247"
by simp
lemma "(-84::int) * 51 = -4284"
by simp
lemma "(255::int) * 255 = 65025"
by simp
lemma "(1359::int) * -2468 = -3354012"
by simp
lemma "(89::int) * 10 \<noteq> 889"
by simp
lemma "(13::int) < 18 - 4"
by simp
lemma "(-345::int) < -242 + -100"
by simp
lemma "(13557456::int) < 18678654"
by simp
lemma "(999999::int) \<le> (1000001 + 1) - 2"
by simp
lemma "(1234567::int) \<le> 1234567"
by simp
text {* \medskip Quotient and Remainder *}
lemma "(10::int) div 3 = 3"
by simp
lemma "(10::int) mod 3 = 1"
by simp
text {* A negative divisor *}
lemma "(10::int) div -3 = -4"
by simp
lemma "(10::int) mod -3 = -2"
by simp
text {*
A negative dividend\footnote{The definition agrees with mathematical
convention but not with the hardware of most computers}
*}
lemma "(-10::int) div 3 = -4"
by simp
lemma "(-10::int) mod 3 = 2"
by simp
text {* A negative dividend \emph{and} divisor *}
lemma "(-10::int) div -3 = 3"
by simp
lemma "(-10::int) mod -3 = -1"
by simp
text {* A few bigger examples *}
lemma "(8452::int) mod 3 = 1"
by simp
lemma "(59485::int) div 434 = 137"
by simp
lemma "(1000006::int) mod 10 = 6"
by simp
text {* \medskip Division by shifting *}
lemma "10000000 div 2 = (5000000::int)"
by simp
lemma "10000001 mod 2 = (1::int)"
by simp
lemma "10000055 div 32 = (312501::int)"
by simp
lemma "10000055 mod 32 = (23::int)"
by simp
lemma "100094 div 144 = (695::int)"
by simp
lemma "100094 mod 144 = (14::int)"
by simp
text {* \medskip Powers *}
lemma "2 ^ 10 = (1024::int)"
by simp
lemma "-3 ^ 7 = (-2187::int)"
by simp
lemma "13 ^ 7 = (62748517::int)"
by simp
lemma "3 ^ 15 = (14348907::int)"
by simp
lemma "-5 ^ 11 = (-48828125::int)"
by simp
subsection {* The Natural Numbers *}
text {* Successor *}
lemma "Suc 99999 = 100000"
by (simp add: Suc_nat_number_of)
-- {* not a default rewrite since sometimes we want to have @{text "Suc #nnn"} *}
text {* \medskip Addition *}
lemma "(13::nat) + 19 = 32"
by simp
lemma "(1234::nat) + 5678 = 6912"
by simp
lemma "(973646::nat) + 6475 = 980121"
by simp
text {* \medskip Subtraction *}
lemma "(32::nat) - 14 = 18"
by simp
lemma "(14::nat) - 15 = 0"
by simp
lemma "(14::nat) - 1576644 = 0"
by simp
lemma "(48273776::nat) - 3873737 = 44400039"
by simp
text {* \medskip Multiplication *}
lemma "(12::nat) * 11 = 132"
by simp
lemma "(647::nat) * 3643 = 2357021"
by simp
text {* \medskip Quotient and Remainder *}
lemma "(10::nat) div 3 = 3"
by simp
lemma "(10::nat) mod 3 = 1"
by simp
lemma "(10000::nat) div 9 = 1111"
by simp
lemma "(10000::nat) mod 9 = 1"
by simp
lemma "(10000::nat) div 16 = 625"
by simp
lemma "(10000::nat) mod 16 = 0"
by simp
text {* \medskip Powers *}
lemma "2 ^ 12 = (4096::nat)"
by simp
lemma "3 ^ 10 = (59049::nat)"
by simp
lemma "12 ^ 7 = (35831808::nat)"
by simp
lemma "3 ^ 14 = (4782969::nat)"
by simp
lemma "5 ^ 11 = (48828125::nat)"
by simp
text {* \medskip Testing the cancellation of complementary terms *}
lemma "y + (x + -x) = (0::int) + y"
by simp
lemma "y + (-x + (- y + x)) = (0::int)"
by simp
lemma "-x + (y + (- y + x)) = (0::int)"
by simp
lemma "x + (x + (- x + (- x + (- y + - z)))) = (0::int) - y - z"
by simp
lemma "x + x - x - x - y - z = (0::int) - y - z"
by simp
lemma "x + y + z - (x + z) = y - (0::int)"
by simp
lemma "x + (y + (y + (y + (-x + -x)))) = (0::int) + y - x + y + y"
by simp
lemma "x + (y + (y + (y + (-y + -x)))) = y + (0::int) + y"
by simp
lemma "x + y - x + z - x - y - z + x < (1::int)"
by simp
text{*The proofs about arithmetic yielding normal forms have been deleted:
they are irrelevant with the new treatment of numerals.*}
end