(* Title: HOL/ex/insort.thy
ID: $Id$
Author: Tobias Nipkow
Copyright 1994 TU Muenchen
Insertion sort
*)
theory InSort = Sorting:
consts
ins :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a list \<Rightarrow> 'a list"
insort :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'a list"
primrec
"ins le x [] = [x]"
"ins le x (y#ys) = (if le x y then (x#y#ys) else y#(ins le x ys))"
primrec
"insort le [] = []"
"insort le (x#xs) = ins le x (insort le xs)"
lemma multiset_ins[simp]:
"\<And>y. multiset(ins le x xs) y = multiset (x#xs) y"
by (induct "xs") auto
lemma insort_permutes[simp]:
"\<And>x. multiset(insort le xs) x = multiset xs x";
by (induct "xs") auto
lemma set_ins[simp]: "set(ins le x xs) = insert x (set xs)"
by (simp add: set_via_multiset) fast
lemma sorted_ins[simp]:
"\<lbrakk> total le; transf le \<rbrakk> \<Longrightarrow> sorted le (ins le x xs) = sorted le xs";
apply (induct xs)
apply simp_all
apply (unfold Sorting.total_def Sorting.transf_def)
apply blast
done
lemma sorted_insort:
"[| total(le); transf(le) |] ==> sorted le (insort le xs)"
by (induct xs) auto
end