(* Author: Markus Wenzel, Stefan Berghofer, and Tobias Nipkow
Basic arithmetic for natural numbers.
*)
signature NAT_ARITH =
sig
val mk_sum: term list -> term
val mk_norm_sum: term list -> term
val dest_sum: term -> term list
val nat_cancel_sums_add: simproc list
val nat_cancel_sums: simproc list
val setup: Context.generic -> Context.generic
end;
structure Nat_Arith: NAT_ARITH =
struct
(** abstract syntax of structure nat: 0, Suc, + **)
val mk_plus = HOLogic.mk_binop @{const_name Groups.plus};
val dest_plus = HOLogic.dest_bin @{const_name Groups.plus} HOLogic.natT;
fun mk_sum [] = HOLogic.zero
| mk_sum [t] = t
| mk_sum (t :: ts) = mk_plus (t, mk_sum ts);
(*normal form of sums: Suc (... (Suc (a + (b + ...))))*)
fun mk_norm_sum ts =
let val (ones, sums) = List.partition (equal HOLogic.Suc_zero) ts in
funpow (length ones) HOLogic.mk_Suc (mk_sum sums)
end;
fun dest_sum tm =
if HOLogic.is_zero tm then []
else
(case try HOLogic.dest_Suc tm of
SOME t => HOLogic.Suc_zero :: dest_sum t
| NONE =>
(case try dest_plus tm of
SOME (t, u) => dest_sum t @ dest_sum u
| NONE => [tm]));
(** cancel common summands **)
structure CommonCancelSums =
struct
val mk_sum = mk_norm_sum;
val dest_sum = dest_sum;
val prove_conv = Arith_Data.prove_conv2;
val norm_tac1 = Arith_Data.simp_all_tac [@{thm add_Suc}, @{thm add_Suc_right},
@{thm Nat.add_0}, @{thm Nat.add_0_right}];
val norm_tac2 = Arith_Data.simp_all_tac @{thms add_ac};
fun norm_tac ss = norm_tac1 ss THEN norm_tac2 ss;
fun gen_uncancel_tac rule = let val rule' = rule RS @{thm subst_equals}
in fn ct => rtac (instantiate' [] [NONE, SOME ct] rule') 1 end;
end;
structure EqCancelSums = CancelSumsFun
(struct
open CommonCancelSums;
val mk_bal = HOLogic.mk_eq;
val dest_bal = HOLogic.dest_bin @{const_name HOL.eq} HOLogic.natT;
val uncancel_tac = gen_uncancel_tac @{thm "nat_add_left_cancel"};
end);
structure LessCancelSums = CancelSumsFun
(struct
open CommonCancelSums;
val mk_bal = HOLogic.mk_binrel @{const_name Orderings.less};
val dest_bal = HOLogic.dest_bin @{const_name Orderings.less} HOLogic.natT;
val uncancel_tac = gen_uncancel_tac @{thm "nat_add_left_cancel_less"};
end);
structure LeCancelSums = CancelSumsFun
(struct
open CommonCancelSums;
val mk_bal = HOLogic.mk_binrel @{const_name Orderings.less_eq};
val dest_bal = HOLogic.dest_bin @{const_name Orderings.less_eq} HOLogic.natT;
val uncancel_tac = gen_uncancel_tac @{thm "nat_add_left_cancel_le"};
end);
structure DiffCancelSums = CancelSumsFun
(struct
open CommonCancelSums;
val mk_bal = HOLogic.mk_binop @{const_name Groups.minus};
val dest_bal = HOLogic.dest_bin @{const_name Groups.minus} HOLogic.natT;
val uncancel_tac = gen_uncancel_tac @{thm "diff_cancel"};
end);
val nat_cancel_sums_add =
[Simplifier.simproc_global @{theory} "nateq_cancel_sums"
["(l::nat) + m = n", "(l::nat) = m + n", "Suc m = n", "m = Suc n"]
(K EqCancelSums.proc),
Simplifier.simproc_global @{theory} "natless_cancel_sums"
["(l::nat) + m < n", "(l::nat) < m + n", "Suc m < n", "m < Suc n"]
(K LessCancelSums.proc),
Simplifier.simproc_global @{theory} "natle_cancel_sums"
["(l::nat) + m <= n", "(l::nat) <= m + n", "Suc m <= n", "m <= Suc n"]
(K LeCancelSums.proc)];
val nat_cancel_sums = nat_cancel_sums_add @
[Simplifier.simproc_global @{theory} "natdiff_cancel_sums"
["((l::nat) + m) - n", "(l::nat) - (m + n)", "Suc m - n", "m - Suc n"]
(K DiffCancelSums.proc)];
val setup =
Simplifier.map_ss (fn ss => ss addsimprocs nat_cancel_sums);
end;