(* Title: HOL/Tools/Lifting/lifting_setup.ML
Author: Ondrej Kuncar
Setting up the lifting infrastructure.
*)
signature LIFTING_SETUP =
sig
exception SETUP_LIFTING_INFR of string
val setup_by_quotient: bool -> thm -> thm option -> local_theory -> local_theory
val setup_by_typedef_thm: bool -> thm -> local_theory -> local_theory
end;
structure Lifting_Setup: LIFTING_SETUP =
struct
open Lifting_Util
infix 0 MRSL
exception SETUP_LIFTING_INFR of string
fun define_cr_rel rep_fun lthy =
let
val (qty, rty) = (dest_funT o fastype_of) rep_fun
val rep_fun_graph = (HOLogic.eq_const rty) $ Bound 1 $ (rep_fun $ Bound 0)
val def_term = Abs ("x", rty, Abs ("y", qty, rep_fun_graph));
val qty_name = (fst o dest_Type) qty
val cr_rel_name = Binding.prefix_name "cr_" (Binding.qualified_name qty_name)
val (fixed_def_term, lthy') = yield_singleton (Variable.importT_terms) def_term lthy
val ((_, (_ , def_thm)), lthy'') =
Local_Theory.define ((cr_rel_name, NoSyn), ((Thm.def_binding cr_rel_name, []), fixed_def_term)) lthy'
in
(def_thm, lthy'')
end
fun define_code_constr gen_code quot_thm lthy =
let
val abs = quot_thm_abs quot_thm
val abs_background = Morphism.term (Local_Theory.target_morphism lthy) abs
in
if gen_code andalso is_Const abs_background then
let
val (const_name, typ) = dest_Const abs_background
val fake_term = Logic.mk_type typ
val (fixed_fake_term, lthy') = yield_singleton(Variable.importT_terms) fake_term lthy
val fixed_type = Logic.dest_type fixed_fake_term
in
Local_Theory.background_theory(Code.add_datatype [(const_name, fixed_type)]) lthy'
end
else
lthy
end
fun define_abs_type gen_code quot_thm lthy =
if gen_code andalso Lifting_Def.can_generate_code_cert quot_thm then
let
val abs_type_thm = quot_thm RS @{thm Quotient_abs_rep}
val add_abstype_attribute =
Thm.declaration_attribute (fn thm => Context.mapping (Code.add_abstype thm) I)
val add_abstype_attrib = Attrib.internal (K add_abstype_attribute);
in
lthy
|> (snd oo Local_Theory.note) ((Binding.empty, [add_abstype_attrib]), [abs_type_thm])
end
else
lthy
fun quot_thm_sanity_check ctxt quot_thm =
let
val ((_, [quot_thm_fixed]), ctxt') = Variable.importT [quot_thm] ctxt
val (rty, qty) = quot_thm_rty_qty quot_thm_fixed
val rty_tfreesT = Term.add_tfree_namesT rty []
val qty_tfreesT = Term.add_tfree_namesT qty []
val extra_rty_tfrees =
case subtract (op =) qty_tfreesT rty_tfreesT of
[] => []
| extras => [Pretty.block ([Pretty.str "Extra variables in the raw type:",
Pretty.brk 1] @
((Pretty.commas o map (Pretty.str o quote)) extras) @
[Pretty.str "."])]
val not_type_constr =
case qty of
Type _ => []
| _ => [Pretty.block [Pretty.str "The quotient type ",
Pretty.quote (Syntax.pretty_typ ctxt' qty),
Pretty.brk 1,
Pretty.str "is not a type constructor."]]
val errs = extra_rty_tfrees @ not_type_constr
in
if null errs then () else error (cat_lines (["Sanity check of the quotient theorem failed:",""]
@ (map Pretty.string_of errs)))
end
fun setup_lifting_infr gen_code quot_thm maybe_reflp_thm lthy =
let
val _ = quot_thm_sanity_check lthy quot_thm
val (_, qtyp) = quot_thm_rty_qty quot_thm
val qty_full_name = (fst o dest_Type) qtyp
val quotients = { quot_thm = quot_thm }
fun quot_info phi = Lifting_Info.transform_quotients phi quotients
val lthy' = case maybe_reflp_thm of
SOME reflp_thm => lthy
|> (snd oo Local_Theory.note) ((Binding.empty, [Lifting_Info.add_reflp_preserve_rule_attrib]),
[reflp_thm])
|> define_code_constr gen_code quot_thm
| NONE => lthy
|> define_abs_type gen_code quot_thm
in
lthy'
|> Local_Theory.declaration {syntax = false, pervasive = true}
(fn phi => Lifting_Info.update_quotients qty_full_name (quot_info phi))
end
(*
Sets up the Lifting package by a quotient theorem.
gen_code - flag if an abstract type given by quot_thm should be registred
as an abstract type in the code generator
quot_thm - a quotient theorem (Quotient R Abs Rep T)
maybe_reflp_thm - a theorem saying that a relation from quot_thm is reflexive
(in the form "reflp R")
*)
fun setup_by_quotient gen_code quot_thm maybe_reflp_thm lthy =
let
val transfer_attr = Attrib.internal (K Transfer.transfer_add)
val (_, qty) = quot_thm_rty_qty quot_thm
val induct_attr = Attrib.internal (K (Induct.induct_type (fst (dest_Type qty))))
val qty_name = (Binding.name o Long_Name.base_name o fst o dest_Type) qty
fun qualify suffix = Binding.qualified true suffix qty_name
val lthy' = case maybe_reflp_thm of
SOME reflp_thm => lthy
|> (snd oo Local_Theory.note) ((qualify "bi_total", [transfer_attr]),
[[quot_thm, reflp_thm] MRSL @{thm Quotient_bi_total}])
|> (snd oo Local_Theory.note) ((qualify "id_abs_transfer", [transfer_attr]),
[[quot_thm, reflp_thm] MRSL @{thm Quotient_id_abs_transfer}])
|> (snd oo Local_Theory.note) ((qualify "abs_induct", [induct_attr]),
[[quot_thm, reflp_thm] MRSL @{thm Quotient_total_abs_induct}])
|> (snd oo Local_Theory.note) ((qualify "abs_eq_iff", []),
[[quot_thm, reflp_thm] MRSL @{thm Quotient_total_abs_eq_iff}])
| NONE => lthy
|> (snd oo Local_Theory.note) ((qualify "All_transfer", [transfer_attr]),
[quot_thm RS @{thm Quotient_All_transfer}])
|> (snd oo Local_Theory.note) ((qualify "Ex_transfer", [transfer_attr]),
[quot_thm RS @{thm Quotient_Ex_transfer}])
|> (snd oo Local_Theory.note) ((qualify "forall_transfer", [transfer_attr]),
[quot_thm RS @{thm Quotient_forall_transfer}])
|> (snd oo Local_Theory.note) ((qualify "abs_induct", [induct_attr]),
[quot_thm RS @{thm Quotient_abs_induct}])
in
lthy'
|> (snd oo Local_Theory.note) ((qualify "right_unique", [transfer_attr]),
[quot_thm RS @{thm Quotient_right_unique}])
|> (snd oo Local_Theory.note) ((qualify "right_total", [transfer_attr]),
[quot_thm RS @{thm Quotient_right_total}])
|> (snd oo Local_Theory.note) ((qualify "rel_eq_transfer", [transfer_attr]),
[quot_thm RS @{thm Quotient_rel_eq_transfer}])
|> setup_lifting_infr gen_code quot_thm maybe_reflp_thm
end
(*
Sets up the Lifting package by a typedef theorem.
gen_code - flag if an abstract type given by typedef_thm should be registred
as an abstract type in the code generator
typedef_thm - a typedef theorem (type_definition Rep Abs S)
*)
fun setup_by_typedef_thm gen_code typedef_thm lthy =
let
val transfer_attr = Attrib.internal (K Transfer.transfer_add)
val (_ $ rep_fun $ _ $ typedef_set) = (HOLogic.dest_Trueprop o prop_of) typedef_thm
val (T_def, lthy') = define_cr_rel rep_fun lthy
val quot_thm = case typedef_set of
Const ("Orderings.top_class.top", _) =>
[typedef_thm, T_def] MRSL @{thm UNIV_typedef_to_Quotient}
| Const (@{const_name "Collect"}, _) $ Abs (_, _, _) =>
[typedef_thm, T_def] MRSL @{thm open_typedef_to_Quotient}
| _ =>
[typedef_thm, T_def] MRSL @{thm typedef_to_Quotient}
val (_, qty) = quot_thm_rty_qty quot_thm
val qty_name = (Binding.name o Long_Name.base_name o fst o dest_Type) qty
fun qualify suffix = Binding.qualified true suffix qty_name
val simplify = Raw_Simplifier.rewrite_rule [mk_meta_eq @{thm mem_Collect_eq}]
val (maybe_reflp_thm, lthy'') = case typedef_set of
Const ("Orderings.top_class.top", _) =>
let
val equivp_thm = typedef_thm RS @{thm UNIV_typedef_to_equivp}
val reflp_thm = equivp_thm RS @{thm equivp_reflp2}
in
lthy'
|> (snd oo Local_Theory.note) ((qualify "bi_total", [transfer_attr]),
[[quot_thm, reflp_thm] MRSL @{thm Quotient_bi_total}])
|> (snd oo Local_Theory.note) ((qualify "id_abs_transfer", [transfer_attr]),
[[quot_thm, reflp_thm] MRSL @{thm Quotient_id_abs_transfer}])
|> pair (SOME reflp_thm)
end
| _ => lthy'
|> (snd oo Local_Theory.note) ((qualify "All_transfer", [transfer_attr]),
[[typedef_thm, T_def] MRSL @{thm typedef_All_transfer}])
|> (snd oo Local_Theory.note) ((qualify "Ex_transfer", [transfer_attr]),
[[typedef_thm, T_def] MRSL @{thm typedef_Ex_transfer}])
|> (snd oo Local_Theory.note) ((qualify "forall_transfer", [transfer_attr]),
[simplify ([typedef_thm, T_def] MRSL @{thm typedef_forall_transfer})])
|> pair NONE
in
lthy''
|> (snd oo Local_Theory.note) ((Binding.prefix_name "Quotient_" qty_name, []),
[quot_thm])
|> (snd oo Local_Theory.note) ((qualify "bi_unique", [transfer_attr]),
[[typedef_thm, T_def] MRSL @{thm typedef_bi_unique}])
|> (snd oo Local_Theory.note) ((qualify "rep_transfer", [transfer_attr]),
[[typedef_thm, T_def] MRSL @{thm typedef_rep_transfer}])
|> (snd oo Local_Theory.note) ((qualify "right_unique", [transfer_attr]),
[[quot_thm] MRSL @{thm Quotient_right_unique}])
|> (snd oo Local_Theory.note) ((qualify "right_total", [transfer_attr]),
[[quot_thm] MRSL @{thm Quotient_right_total}])
|> setup_lifting_infr gen_code quot_thm maybe_reflp_thm
end
fun setup_lifting_cmd gen_code xthm opt_reflp_xthm lthy =
let
val input_thm = singleton (Attrib.eval_thms lthy) xthm
val input_term = (HOLogic.dest_Trueprop o prop_of) input_thm
handle TERM _ => error "Unsupported type of a theorem. Only Quotient or type_definition are supported."
fun sanity_check_reflp_thm reflp_thm =
let
val reflp_tm = (HOLogic.dest_Trueprop o prop_of) reflp_thm
handle TERM _ => error "Invalid form of the reflexivity theorem. Use \"reflp R\"."
in
case reflp_tm of
Const (@{const_name reflp}, _) $ _ => ()
| _ => error "Invalid form of the reflexivity theorem. Use \"reflp R\"."
end
fun setup_quotient () =
case opt_reflp_xthm of
SOME reflp_xthm =>
let
val reflp_thm = singleton (Attrib.eval_thms lthy) reflp_xthm
val _ = sanity_check_reflp_thm reflp_thm
in
setup_by_quotient gen_code input_thm (SOME reflp_thm) lthy
end
| NONE => setup_by_quotient gen_code input_thm NONE lthy
fun setup_typedef () =
case opt_reflp_xthm of
SOME _ => error "The reflexivity theorem cannot be specified if the type_definition theorem is used."
| NONE => setup_by_typedef_thm gen_code input_thm lthy
in
case input_term of
(Const (@{const_name Quotient}, _) $ _ $ _ $ _ $ _) => setup_quotient ()
| (Const (@{const_name type_definition}, _) $ _ $ _ $ _) => setup_typedef ()
| _ => error "Unsupported type of a theorem. Only Quotient or type_definition are supported."
end
val opt_gen_code =
Scan.optional (@{keyword "("} |-- Parse.!!! ((Parse.reserved "no_code" >> K false) --| @{keyword ")"})) true
val _ =
Outer_Syntax.local_theory @{command_spec "setup_lifting"}
"Setup lifting infrastructure"
(opt_gen_code -- Parse_Spec.xthm -- Scan.option Parse_Spec.xthm >>
(fn ((gen_code, xthm), opt_reflp_xthm) => setup_lifting_cmd gen_code xthm opt_reflp_xthm))
end;