src/CCL/ex/Flag.thy
author wenzelm
Tue, 11 Nov 2014 10:54:52 +0100
changeset 58971 8c9a319821b3
parent 58889 5b7a9633cfa8
child 58977 9576b510f6a2
permissions -rw-r--r--
more Isar proof methods;

(*  Title:      CCL/ex/Flag.thy
    Author:     Martin Coen, Cambridge University Computer Laboratory
    Copyright   1993  University of Cambridge
*)

section {* Dutch national flag program -- except that the point of Dijkstra's example was to use
  arrays and this uses lists. *}

theory Flag
imports List
begin

definition Colour :: "i set"
  where "Colour == Unit + Unit + Unit"

definition red :: "i"
  where "red == inl(one)"

definition white :: "i"
  where "white == inr(inl(one))"

definition blue :: "i"
  where "blue == inr(inr(one))"

definition ccase :: "[i,i,i,i]=>i"
  where "ccase(c,r,w,b) == when(c,%x. r,%wb. when(wb,%x. w,%x. b))"

definition flag :: "i"
  where
    "flag == lam l. letrec
      flagx l be lcase(l,<[],<[],[]>>,
                       %h t. split(flagx(t),%lr p. split(p,%lw lb.
                            ccase(h, <red$lr,<lw,lb>>,
                                     <lr,<white$lw,lb>>,
                                     <lr,<lw,blue$lb>>))))
      in flagx(l)"

axiomatization Perm :: "i => i => o"
definition Flag :: "i => i => o" where
  "Flag(l,x) == ALL lr:List(Colour).ALL lw:List(Colour).ALL lb:List(Colour).
                x = <lr,<lw,lb>> -->
              (ALL c:Colour.(c mem lr = true --> c=red) &
                            (c mem lw = true --> c=white) &
                            (c mem lb = true --> c=blue)) &
              Perm(l,lr @ lw @ lb)"


lemmas flag_defs = Colour_def red_def white_def blue_def ccase_def

lemma ColourXH: "a : Colour <-> (a=red | a=white | a=blue)"
  unfolding simp_type_defs flag_defs by blast

lemma redT: "red : Colour"
  and whiteT: "white : Colour"
  and blueT: "blue : Colour"
  unfolding ColourXH by blast+

lemma ccaseT:
  "[| c:Colour; c=red ==> r : C(red); c=white ==> w : C(white); c=blue ==> b : C(blue) |]
    ==> ccase(c,r,w,b) : C(c)"
  unfolding flag_defs by ncanT

lemma "flag : List(Colour)->List(Colour)*List(Colour)*List(Colour)"
  apply (unfold flag_def)
  apply (typechk redT whiteT blueT ccaseT)
  apply clean_ccs
  apply (erule ListPRI [THEN ListPR_wf [THEN wfI]])
  apply assumption
  done

lemma "flag : PROD l:List(Colour).{x:List(Colour)*List(Colour)*List(Colour).Flag(x,l)}"
  apply (unfold flag_def)
  apply (gen_ccs redT whiteT blueT ccaseT)
  oops

end