| author | wenzelm |
| Sat, 16 Dec 2000 21:40:49 +0100 | |
| changeset 10685 | 8cb1d80f10de |
| parent 10599 | 2df753cf86e9 |
| child 11164 | 03f5dc539fd9 |
| permissions | -rw-r--r-- |
(* Title: HOL/NatArith.thy ID: $Id$ Setup arithmetic proof procedures. *) theory NatArith = Nat files "arith_data.ML": setup arith_setup (*elimination of `-' on nat*) lemma nat_diff_split: "P(a - b::nat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))" by (cases "a < b" rule: case_split) (auto simp add: diff_is_0_eq [THEN iffD2]) ML {* val nat_diff_split = thm "nat_diff_split" *} lemmas [arith_split] = nat_diff_split split_min split_max end